Step |
Hyp |
Ref |
Expression |
1 |
|
symgfixf.p |
|
2 |
|
symgfixf.q |
|
3 |
|
symgfixf.s |
|
4 |
|
symgfixf.h |
|
5 |
1 2 3 4
|
symgfixf |
|
6 |
4
|
fvtresfn |
|
7 |
4
|
fvtresfn |
|
8 |
6 7
|
eqeqan12d |
|
9 |
8
|
adantl |
|
10 |
1 2
|
symgfixelq |
|
11 |
10
|
elv |
|
12 |
1 2
|
symgfixelq |
|
13 |
12
|
elv |
|
14 |
11 13
|
anbi12i |
|
15 |
|
f1ofn |
|
16 |
15
|
adantr |
|
17 |
|
f1ofn |
|
18 |
17
|
adantr |
|
19 |
16 18
|
anim12i |
|
20 |
|
difss |
|
21 |
19 20
|
jctir |
|
22 |
21
|
adantl |
|
23 |
|
fvreseq |
|
24 |
22 23
|
syl |
|
25 |
|
f1of |
|
26 |
25
|
adantr |
|
27 |
|
f1of |
|
28 |
27
|
adantr |
|
29 |
|
fdm |
|
30 |
|
fdm |
|
31 |
29 30
|
anim12i |
|
32 |
26 28 31
|
syl2an |
|
33 |
|
eqtr3 |
|
34 |
32 33
|
syl |
|
35 |
34
|
ad2antlr |
|
36 |
|
simpr |
|
37 |
|
eqtr3 |
|
38 |
37
|
ad2ant2l |
|
39 |
38
|
ad2antlr |
|
40 |
|
fveq2 |
|
41 |
|
fveq2 |
|
42 |
40 41
|
eqeq12d |
|
43 |
42
|
ralunsn |
|
44 |
43
|
adantr |
|
45 |
44
|
adantr |
|
46 |
36 39 45
|
mpbir2and |
|
47 |
|
f1odm |
|
48 |
47
|
adantr |
|
49 |
48
|
adantr |
|
50 |
|
difsnid |
|
51 |
50
|
eqcomd |
|
52 |
49 51
|
sylan9eqr |
|
53 |
52
|
adantr |
|
54 |
53
|
raleqdv |
|
55 |
46 54
|
mpbird |
|
56 |
|
f1ofun |
|
57 |
56
|
adantr |
|
58 |
|
f1ofun |
|
59 |
58
|
adantr |
|
60 |
57 59
|
anim12i |
|
61 |
60
|
ad2antlr |
|
62 |
|
eqfunfv |
|
63 |
61 62
|
syl |
|
64 |
35 55 63
|
mpbir2and |
|
65 |
64
|
ex |
|
66 |
24 65
|
sylbid |
|
67 |
14 66
|
sylan2b |
|
68 |
9 67
|
sylbid |
|
69 |
68
|
ralrimivva |
|
70 |
|
dff13 |
|
71 |
5 69 70
|
sylanbrc |
|