Metamath Proof Explorer


Theorem eqeqan12d

Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT . (Contributed by NM, 9-Aug-1994) (Proof shortened by Andrew Salmon, 25-May-2011) Shorten other proofs. (Revised by Wolf Lammen, 23-Oct-2024)

Ref Expression
Hypotheses eqeqan12d.1 φA=B
eqeqan12d.2 ψC=D
Assertion eqeqan12d φψA=CB=D

Proof

Step Hyp Ref Expression
1 eqeqan12d.1 φA=B
2 eqeqan12d.2 ψC=D
3 1 eqeq1d φA=CB=C
4 2 eqeq2d ψB=CB=D
5 3 4 sylan9bb φψA=CB=D