Metamath Proof Explorer


Theorem ralunsn

Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypothesis ralunsn.1 x=Bφψ
Assertion ralunsn BCxABφxAφψ

Proof

Step Hyp Ref Expression
1 ralunsn.1 x=Bφψ
2 ralunb xABφxAφxBφ
3 1 ralsng BCxBφψ
4 3 anbi2d BCxAφxBφxAφψ
5 2 4 bitrid BCxABφxAφψ