Metamath Proof Explorer


Theorem ralunsn

Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypothesis ralunsn.1 x = B φ ψ
Assertion ralunsn B C x A B φ x A φ ψ

Proof

Step Hyp Ref Expression
1 ralunsn.1 x = B φ ψ
2 ralunb x A B φ x A φ x B φ
3 1 ralsng B C x B φ ψ
4 3 anbi2d B C x A φ x B φ x A φ ψ
5 2 4 bitrid B C x A B φ x A φ ψ