Metamath Proof Explorer


Theorem ralunsn

Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypothesis ralunsn.1 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
Assertion ralunsn ( 𝐵𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑥𝐴 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 ralunsn.1 ( 𝑥 = 𝐵 → ( 𝜑𝜓 ) )
2 ralunb ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) )
3 1 ralsng ( 𝐵𝐶 → ( ∀ 𝑥 ∈ { 𝐵 } 𝜑𝜓 ) )
4 3 anbi2d ( 𝐵𝐶 → ( ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥 ∈ { 𝐵 } 𝜑 ) ↔ ( ∀ 𝑥𝐴 𝜑𝜓 ) ) )
5 2 4 bitrid ( 𝐵𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑥𝐴 𝜑𝜓 ) ) )