Metamath Proof Explorer


Theorem 2ralunsn

Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Hypotheses 2ralunsn.1 ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
2ralunsn.2 ( 𝑦 = 𝐵 → ( 𝜑𝜓 ) )
2ralunsn.3 ( 𝑥 = 𝐵 → ( 𝜓𝜃 ) )
Assertion 2ralunsn ( 𝐵𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ( ∀ 𝑥𝐴𝑦𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) ∧ ( ∀ 𝑦𝐴 𝜒𝜃 ) ) ) )

Proof

Step Hyp Ref Expression
1 2ralunsn.1 ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
2 2ralunsn.2 ( 𝑦 = 𝐵 → ( 𝜑𝜓 ) )
3 2ralunsn.3 ( 𝑥 = 𝐵 → ( 𝜓𝜃 ) )
4 2 ralunsn ( 𝐵𝐶 → ( ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑦𝐴 𝜑𝜓 ) ) )
5 4 ralbidv ( 𝐵𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ( ∀ 𝑦𝐴 𝜑𝜓 ) ) )
6 1 ralbidv ( 𝑥 = 𝐵 → ( ∀ 𝑦𝐴 𝜑 ↔ ∀ 𝑦𝐴 𝜒 ) )
7 6 3 anbi12d ( 𝑥 = 𝐵 → ( ( ∀ 𝑦𝐴 𝜑𝜓 ) ↔ ( ∀ 𝑦𝐴 𝜒𝜃 ) ) )
8 7 ralunsn ( 𝐵𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ( ∀ 𝑦𝐴 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 ( ∀ 𝑦𝐴 𝜑𝜓 ) ∧ ( ∀ 𝑦𝐴 𝜒𝜃 ) ) ) )
9 r19.26 ( ∀ 𝑥𝐴 ( ∀ 𝑦𝐴 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴𝑦𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) )
10 9 anbi1i ( ( ∀ 𝑥𝐴 ( ∀ 𝑦𝐴 𝜑𝜓 ) ∧ ( ∀ 𝑦𝐴 𝜒𝜃 ) ) ↔ ( ( ∀ 𝑥𝐴𝑦𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) ∧ ( ∀ 𝑦𝐴 𝜒𝜃 ) ) )
11 8 10 bitrdi ( 𝐵𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ( ∀ 𝑦𝐴 𝜑𝜓 ) ↔ ( ( ∀ 𝑥𝐴𝑦𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) ∧ ( ∀ 𝑦𝐴 𝜒𝜃 ) ) ) )
12 5 11 bitrd ( 𝐵𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ( ∀ 𝑥𝐴𝑦𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) ∧ ( ∀ 𝑦𝐴 𝜒𝜃 ) ) ) )