Metamath Proof Explorer


Theorem ralunsn

Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypothesis ralunsn.1
|- ( x = B -> ( ph <-> ps ) )
Assertion ralunsn
|- ( B e. C -> ( A. x e. ( A u. { B } ) ph <-> ( A. x e. A ph /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 ralunsn.1
 |-  ( x = B -> ( ph <-> ps ) )
2 ralunb
 |-  ( A. x e. ( A u. { B } ) ph <-> ( A. x e. A ph /\ A. x e. { B } ph ) )
3 1 ralsng
 |-  ( B e. C -> ( A. x e. { B } ph <-> ps ) )
4 3 anbi2d
 |-  ( B e. C -> ( ( A. x e. A ph /\ A. x e. { B } ph ) <-> ( A. x e. A ph /\ ps ) ) )
5 2 4 bitrid
 |-  ( B e. C -> ( A. x e. ( A u. { B } ) ph <-> ( A. x e. A ph /\ ps ) ) )