Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 23-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralunsn.1 | |- ( x = B -> ( ph <-> ps ) ) |
|
Assertion | ralunsn | |- ( B e. C -> ( A. x e. ( A u. { B } ) ph <-> ( A. x e. A ph /\ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralunsn.1 | |- ( x = B -> ( ph <-> ps ) ) |
|
2 | ralunb | |- ( A. x e. ( A u. { B } ) ph <-> ( A. x e. A ph /\ A. x e. { B } ph ) ) |
|
3 | 1 | ralsng | |- ( B e. C -> ( A. x e. { B } ph <-> ps ) ) |
4 | 3 | anbi2d | |- ( B e. C -> ( ( A. x e. A ph /\ A. x e. { B } ph ) <-> ( A. x e. A ph /\ ps ) ) ) |
5 | 2 4 | bitrid | |- ( B e. C -> ( A. x e. ( A u. { B } ) ph <-> ( A. x e. A ph /\ ps ) ) ) |