Metamath Proof Explorer


Theorem symgfixelq

Description: A permutation of a set fixing an element of the set. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P=BaseSymGrpN
symgfixf.q Q=qP|qK=K
Assertion symgfixelq FVFQF:N1-1 ontoNFK=K

Proof

Step Hyp Ref Expression
1 symgfixf.p P=BaseSymGrpN
2 symgfixf.q Q=qP|qK=K
3 fveq1 f=FfK=FK
4 3 eqeq1d f=FfK=KFK=K
5 fveq1 q=fqK=fK
6 5 eqeq1d q=fqK=KfK=K
7 6 cbvrabv qP|qK=K=fP|fK=K
8 2 7 eqtri Q=fP|fK=K
9 4 8 elrab2 FQFPFK=K
10 eqid SymGrpN=SymGrpN
11 10 1 elsymgbas2 FVFPF:N1-1 ontoN
12 11 anbi1d FVFPFK=KF:N1-1 ontoNFK=K
13 9 12 bitrid FVFQF:N1-1 ontoNFK=K