| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgfixf.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | symgfixf.q |  |-  Q = { q e. P | ( q ` K ) = K } | 
						
							| 3 |  | fveq1 |  |-  ( f = F -> ( f ` K ) = ( F ` K ) ) | 
						
							| 4 | 3 | eqeq1d |  |-  ( f = F -> ( ( f ` K ) = K <-> ( F ` K ) = K ) ) | 
						
							| 5 |  | fveq1 |  |-  ( q = f -> ( q ` K ) = ( f ` K ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( q = f -> ( ( q ` K ) = K <-> ( f ` K ) = K ) ) | 
						
							| 7 | 6 | cbvrabv |  |-  { q e. P | ( q ` K ) = K } = { f e. P | ( f ` K ) = K } | 
						
							| 8 | 2 7 | eqtri |  |-  Q = { f e. P | ( f ` K ) = K } | 
						
							| 9 | 4 8 | elrab2 |  |-  ( F e. Q <-> ( F e. P /\ ( F ` K ) = K ) ) | 
						
							| 10 |  | eqid |  |-  ( SymGrp ` N ) = ( SymGrp ` N ) | 
						
							| 11 | 10 1 | elsymgbas2 |  |-  ( F e. V -> ( F e. P <-> F : N -1-1-onto-> N ) ) | 
						
							| 12 | 11 | anbi1d |  |-  ( F e. V -> ( ( F e. P /\ ( F ` K ) = K ) <-> ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) ) | 
						
							| 13 | 9 12 | bitrid |  |-  ( F e. V -> ( F e. Q <-> ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) ) |