| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgfixf.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
| 2 |
|
symgfixf.q |
|- Q = { q e. P | ( q ` K ) = K } |
| 3 |
|
symgfixf.s |
|- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
| 4 |
|
symgfixf.d |
|- D = ( N \ { K } ) |
| 5 |
3
|
eleq2i |
|- ( ( F |` D ) e. S <-> ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) |
| 6 |
5
|
a1i |
|- ( F e. V -> ( ( F |` D ) e. S <-> ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) ) |
| 7 |
|
resexg |
|- ( F e. V -> ( F |` D ) e. _V ) |
| 8 |
|
eqid |
|- ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) |
| 9 |
|
eqid |
|- ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
| 10 |
8 9
|
elsymgbas2 |
|- ( ( F |` D ) e. _V -> ( ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) <-> ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) ) ) |
| 11 |
7 10
|
syl |
|- ( F e. V -> ( ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) <-> ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) ) ) |
| 12 |
|
eqidd |
|- ( F e. V -> ( F |` D ) = ( F |` D ) ) |
| 13 |
4
|
a1i |
|- ( F e. V -> D = ( N \ { K } ) ) |
| 14 |
13
|
eqcomd |
|- ( F e. V -> ( N \ { K } ) = D ) |
| 15 |
12 14 14
|
f1oeq123d |
|- ( F e. V -> ( ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) <-> ( F |` D ) : D -1-1-onto-> D ) ) |
| 16 |
6 11 15
|
3bitrd |
|- ( F e. V -> ( ( F |` D ) e. S <-> ( F |` D ) : D -1-1-onto-> D ) ) |