| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symgfixf.p |  |-  P = ( Base ` ( SymGrp ` N ) ) | 
						
							| 2 |  | symgfixf.q |  |-  Q = { q e. P | ( q ` K ) = K } | 
						
							| 3 |  | symgfixf.s |  |-  S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | 
						
							| 4 |  | symgfixf.d |  |-  D = ( N \ { K } ) | 
						
							| 5 | 3 | eleq2i |  |-  ( ( F |` D ) e. S <-> ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) | 
						
							| 6 | 5 | a1i |  |-  ( F e. V -> ( ( F |` D ) e. S <-> ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) ) | 
						
							| 7 |  | resexg |  |-  ( F e. V -> ( F |` D ) e. _V ) | 
						
							| 8 |  | eqid |  |-  ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) | 
						
							| 10 | 8 9 | elsymgbas2 |  |-  ( ( F |` D ) e. _V -> ( ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) <-> ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( F e. V -> ( ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) <-> ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) ) ) | 
						
							| 12 |  | eqidd |  |-  ( F e. V -> ( F |` D ) = ( F |` D ) ) | 
						
							| 13 | 4 | a1i |  |-  ( F e. V -> D = ( N \ { K } ) ) | 
						
							| 14 | 13 | eqcomd |  |-  ( F e. V -> ( N \ { K } ) = D ) | 
						
							| 15 | 12 14 14 | f1oeq123d |  |-  ( F e. V -> ( ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) <-> ( F |` D ) : D -1-1-onto-> D ) ) | 
						
							| 16 | 6 11 15 | 3bitrd |  |-  ( F e. V -> ( ( F |` D ) e. S <-> ( F |` D ) : D -1-1-onto-> D ) ) |