Metamath Proof Explorer


Theorem symgfixels

Description: The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p
|- P = ( Base ` ( SymGrp ` N ) )
symgfixf.q
|- Q = { q e. P | ( q ` K ) = K }
symgfixf.s
|- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
symgfixf.d
|- D = ( N \ { K } )
Assertion symgfixels
|- ( F e. V -> ( ( F |` D ) e. S <-> ( F |` D ) : D -1-1-onto-> D ) )

Proof

Step Hyp Ref Expression
1 symgfixf.p
 |-  P = ( Base ` ( SymGrp ` N ) )
2 symgfixf.q
 |-  Q = { q e. P | ( q ` K ) = K }
3 symgfixf.s
 |-  S = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
4 symgfixf.d
 |-  D = ( N \ { K } )
5 3 eleq2i
 |-  ( ( F |` D ) e. S <-> ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) )
6 5 a1i
 |-  ( F e. V -> ( ( F |` D ) e. S <-> ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) )
7 resexg
 |-  ( F e. V -> ( F |` D ) e. _V )
8 eqid
 |-  ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) )
9 eqid
 |-  ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
10 8 9 elsymgbas2
 |-  ( ( F |` D ) e. _V -> ( ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) <-> ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) ) )
11 7 10 syl
 |-  ( F e. V -> ( ( F |` D ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) <-> ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) ) )
12 eqidd
 |-  ( F e. V -> ( F |` D ) = ( F |` D ) )
13 4 a1i
 |-  ( F e. V -> D = ( N \ { K } ) )
14 13 eqcomd
 |-  ( F e. V -> ( N \ { K } ) = D )
15 12 14 14 f1oeq123d
 |-  ( F e. V -> ( ( F |` D ) : ( N \ { K } ) -1-1-onto-> ( N \ { K } ) <-> ( F |` D ) : D -1-1-onto-> D ) )
16 6 11 15 3bitrd
 |-  ( F e. V -> ( ( F |` D ) e. S <-> ( F |` D ) : D -1-1-onto-> D ) )