| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgfixf.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 2 |
|
symgfixf.q |
⊢ 𝑄 = { 𝑞 ∈ 𝑃 ∣ ( 𝑞 ‘ 𝐾 ) = 𝐾 } |
| 3 |
|
symgfixf.s |
⊢ 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 4 |
|
symgfixf.d |
⊢ 𝐷 = ( 𝑁 ∖ { 𝐾 } ) |
| 5 |
3
|
eleq2i |
⊢ ( ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ↔ ( 𝐹 ↾ 𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) |
| 6 |
5
|
a1i |
⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ↔ ( 𝐹 ↾ 𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) ) |
| 7 |
|
resexg |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝐷 ) ∈ V ) |
| 8 |
|
eqid |
⊢ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 10 |
8 9
|
elsymgbas2 |
⊢ ( ( 𝐹 ↾ 𝐷 ) ∈ V → ( ( 𝐹 ↾ 𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ↔ ( 𝐹 ↾ 𝐷 ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 11 |
7 10
|
syl |
⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ↾ 𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ↔ ( 𝐹 ↾ 𝐷 ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ) ) |
| 12 |
|
eqidd |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝐷 ) = ( 𝐹 ↾ 𝐷 ) ) |
| 13 |
4
|
a1i |
⊢ ( 𝐹 ∈ 𝑉 → 𝐷 = ( 𝑁 ∖ { 𝐾 } ) ) |
| 14 |
13
|
eqcomd |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝑁 ∖ { 𝐾 } ) = 𝐷 ) |
| 15 |
12 14 14
|
f1oeq123d |
⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ↾ 𝐷 ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ↔ ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) ) |
| 16 |
6 11 15
|
3bitrd |
⊢ ( 𝐹 ∈ 𝑉 → ( ( 𝐹 ↾ 𝐷 ) ∈ 𝑆 ↔ ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ 𝐷 ) ) |