Metamath Proof Explorer


Theorem symgfixels

Description: The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
symgfixf.q 𝑄 = { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 }
symgfixf.s 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) )
symgfixf.d 𝐷 = ( 𝑁 ∖ { 𝐾 } )
Assertion symgfixels ( 𝐹𝑉 → ( ( 𝐹𝐷 ) ∈ 𝑆 ↔ ( 𝐹𝐷 ) : 𝐷1-1-onto𝐷 ) )

Proof

Step Hyp Ref Expression
1 symgfixf.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 symgfixf.q 𝑄 = { 𝑞𝑃 ∣ ( 𝑞𝐾 ) = 𝐾 }
3 symgfixf.s 𝑆 = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) )
4 symgfixf.d 𝐷 = ( 𝑁 ∖ { 𝐾 } )
5 3 eleq2i ( ( 𝐹𝐷 ) ∈ 𝑆 ↔ ( 𝐹𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) )
6 5 a1i ( 𝐹𝑉 → ( ( 𝐹𝐷 ) ∈ 𝑆 ↔ ( 𝐹𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ) )
7 resexg ( 𝐹𝑉 → ( 𝐹𝐷 ) ∈ V )
8 eqid ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) = ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) )
9 eqid ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) = ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) )
10 8 9 elsymgbas2 ( ( 𝐹𝐷 ) ∈ V → ( ( 𝐹𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ↔ ( 𝐹𝐷 ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ) )
11 7 10 syl ( 𝐹𝑉 → ( ( 𝐹𝐷 ) ∈ ( Base ‘ ( SymGrp ‘ ( 𝑁 ∖ { 𝐾 } ) ) ) ↔ ( 𝐹𝐷 ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ) )
12 eqidd ( 𝐹𝑉 → ( 𝐹𝐷 ) = ( 𝐹𝐷 ) )
13 4 a1i ( 𝐹𝑉𝐷 = ( 𝑁 ∖ { 𝐾 } ) )
14 13 eqcomd ( 𝐹𝑉 → ( 𝑁 ∖ { 𝐾 } ) = 𝐷 )
15 12 14 14 f1oeq123d ( 𝐹𝑉 → ( ( 𝐹𝐷 ) : ( 𝑁 ∖ { 𝐾 } ) –1-1-onto→ ( 𝑁 ∖ { 𝐾 } ) ↔ ( 𝐹𝐷 ) : 𝐷1-1-onto𝐷 ) )
16 6 11 15 3bitrd ( 𝐹𝑉 → ( ( 𝐹𝐷 ) ∈ 𝑆 ↔ ( 𝐹𝐷 ) : 𝐷1-1-onto𝐷 ) )