Metamath Proof Explorer


Theorem symgfixels

Description: The restriction of a permutation to a set with one element removed is an element of the restricted symmetric group if the restriction is a 1-1 onto function. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P=BaseSymGrpN
symgfixf.q Q=qP|qK=K
symgfixf.s S=BaseSymGrpNK
symgfixf.d D=NK
Assertion symgfixels FVFDSFD:D1-1 ontoD

Proof

Step Hyp Ref Expression
1 symgfixf.p P=BaseSymGrpN
2 symgfixf.q Q=qP|qK=K
3 symgfixf.s S=BaseSymGrpNK
4 symgfixf.d D=NK
5 3 eleq2i FDSFDBaseSymGrpNK
6 5 a1i FVFDSFDBaseSymGrpNK
7 resexg FVFDV
8 eqid SymGrpNK=SymGrpNK
9 eqid BaseSymGrpNK=BaseSymGrpNK
10 8 9 elsymgbas2 FDVFDBaseSymGrpNKFD:NK1-1 ontoNK
11 7 10 syl FVFDBaseSymGrpNKFD:NK1-1 ontoNK
12 eqidd FVFD=FD
13 4 a1i FVD=NK
14 13 eqcomd FVNK=D
15 12 14 14 f1oeq123d FVFD:NK1-1 ontoNKFD:D1-1 ontoD
16 6 11 15 3bitrd FVFDSFD:D1-1 ontoD