Metamath Proof Explorer


Theorem cbvrabv

Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999) Require x , y be disjoint to avoid ax-11 and ax-13 . (Revised by Steven Nguyen, 4-Dec-2022)

Ref Expression
Hypothesis cbvrabv.1 x=yφψ
Assertion cbvrabv xA|φ=yA|ψ

Proof

Step Hyp Ref Expression
1 cbvrabv.1 x=yφψ
2 eleq1w x=yxAyA
3 2 1 anbi12d x=yxAφyAψ
4 3 cbvabv x|xAφ=y|yAψ
5 df-rab xA|φ=x|xAφ
6 df-rab yA|ψ=y|yAψ
7 4 5 6 3eqtr4i xA|φ=yA|ψ