Metamath Proof Explorer


Theorem rabeqcda

Description: When ps is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc . (Contributed by Steven Nguyen, 7-Jun-2023)

Ref Expression
Hypothesis rabeqcda.1 φxAψ
Assertion rabeqcda φxA|ψ=A

Proof

Step Hyp Ref Expression
1 rabeqcda.1 φxAψ
2 df-rab xA|ψ=x|xAψ
3 1 ex φxAψ
4 3 pm4.71d φxAxAψ
5 4 eqabdv φA=x|xAψ
6 2 5 eqtr4id φxA|ψ=A