Metamath Proof Explorer


Theorem rabeqcda

Description: When ps is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc . (Contributed by Steven Nguyen, 7-Jun-2023)

Ref Expression
Hypothesis rabeqcda.1
|- ( ( ph /\ x e. A ) -> ps )
Assertion rabeqcda
|- ( ph -> { x e. A | ps } = A )

Proof

Step Hyp Ref Expression
1 rabeqcda.1
 |-  ( ( ph /\ x e. A ) -> ps )
2 df-rab
 |-  { x e. A | ps } = { x | ( x e. A /\ ps ) }
3 1 ex
 |-  ( ph -> ( x e. A -> ps ) )
4 3 pm4.71d
 |-  ( ph -> ( x e. A <-> ( x e. A /\ ps ) ) )
5 4 bicomd
 |-  ( ph -> ( ( x e. A /\ ps ) <-> x e. A ) )
6 5 abbi1dv
 |-  ( ph -> { x | ( x e. A /\ ps ) } = A )
7 2 6 eqtrid
 |-  ( ph -> { x e. A | ps } = A )