Description: When ps is always true in a context, a restricted class abstraction is equal to the restricting class. Deduction form of rabeqc . (Contributed by Steven Nguyen, 7-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rabeqcda.1 | |- ( ( ph /\ x e. A ) -> ps ) |
|
Assertion | rabeqcda | |- ( ph -> { x e. A | ps } = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqcda.1 | |- ( ( ph /\ x e. A ) -> ps ) |
|
2 | df-rab | |- { x e. A | ps } = { x | ( x e. A /\ ps ) } |
|
3 | 1 | ex | |- ( ph -> ( x e. A -> ps ) ) |
4 | 3 | pm4.71d | |- ( ph -> ( x e. A <-> ( x e. A /\ ps ) ) ) |
5 | 4 | bicomd | |- ( ph -> ( ( x e. A /\ ps ) <-> x e. A ) ) |
6 | 5 | abbi1dv | |- ( ph -> { x | ( x e. A /\ ps ) } = A ) |
7 | 2 6 | eqtrid | |- ( ph -> { x e. A | ps } = A ) |