Metamath Proof Explorer


Theorem symgfixfolem1

Description: Lemma 1 for symgfixfo . (Contributed by AV, 7-Jan-2019)

Ref Expression
Hypotheses symgfixf.p P=BaseSymGrpN
symgfixf.q Q=qP|qK=K
symgfixf.s S=BaseSymGrpNK
symgfixf.h H=qQqNK
symgfixfo.e E=xNifx=KKZx
Assertion symgfixfolem1 NVKNZSEQ

Proof

Step Hyp Ref Expression
1 symgfixf.p P=BaseSymGrpN
2 symgfixf.q Q=qP|qK=K
3 symgfixf.s S=BaseSymGrpNK
4 symgfixf.h H=qQqNK
5 symgfixfo.e E=xNifx=KKZx
6 3 5 symgextf1o KNZSE:N1-1 ontoN
7 6 3adant1 NVKNZSE:N1-1 ontoN
8 iftrue x=Kifx=KKZx=K
9 simp2 NVKNZSKN
10 5 8 9 9 fvmptd3 NVKNZSEK=K
11 mptexg NVxNifx=KKZxV
12 11 3ad2ant1 NVKNZSxNifx=KKZxV
13 5 12 eqeltrid NVKNZSEV
14 1 2 symgfixelq EVEQE:N1-1 ontoNEK=K
15 13 14 syl NVKNZSEQE:N1-1 ontoNEK=K
16 7 10 15 mpbir2and NVKNZSEQ