Description: Lemma 1 for symgfixfo . (Contributed by AV, 7-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgfixf.p | |
|
symgfixf.q | |
||
symgfixf.s | |
||
symgfixf.h | |
||
symgfixfo.e | |
||
Assertion | symgfixfolem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgfixf.p | |
|
2 | symgfixf.q | |
|
3 | symgfixf.s | |
|
4 | symgfixf.h | |
|
5 | symgfixfo.e | |
|
6 | 3 5 | symgextf1o | |
7 | 6 | 3adant1 | |
8 | iftrue | |
|
9 | simp2 | |
|
10 | 5 8 9 9 | fvmptd3 | |
11 | mptexg | |
|
12 | 11 | 3ad2ant1 | |
13 | 5 12 | eqeltrid | |
14 | 1 2 | symgfixelq | |
15 | 13 14 | syl | |
16 | 7 10 15 | mpbir2and | |