Metamath Proof Explorer


Theorem symgextf1o

Description: The extension of a permutation, fixing the additional element, is a bijection. (Contributed by AV, 7-Jan-2019)

Ref Expression
Hypotheses symgext.s S=BaseSymGrpNK
symgext.e E=xNifx=KKZx
Assertion symgextf1o KNZSE:N1-1 ontoN

Proof

Step Hyp Ref Expression
1 symgext.s S=BaseSymGrpNK
2 symgext.e E=xNifx=KKZx
3 1 2 symgextf1 KNZSE:N1-1N
4 1 2 symgextfo KNZSE:NontoN
5 df-f1o E:N1-1 ontoNE:N1-1NE:NontoN
6 3 4 5 sylanbrc KNZSE:N1-1 ontoN