Metamath Proof Explorer


Theorem fvtresfn

Description: Functionality of a tuple-restriction function. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis fvtresfn.f
|- F = ( x e. B |-> ( x |` V ) )
Assertion fvtresfn
|- ( X e. B -> ( F ` X ) = ( X |` V ) )

Proof

Step Hyp Ref Expression
1 fvtresfn.f
 |-  F = ( x e. B |-> ( x |` V ) )
2 resexg
 |-  ( X e. B -> ( X |` V ) e. _V )
3 reseq1
 |-  ( x = X -> ( x |` V ) = ( X |` V ) )
4 3 1 fvmptg
 |-  ( ( X e. B /\ ( X |` V ) e. _V ) -> ( F ` X ) = ( X |` V ) )
5 2 4 mpdan
 |-  ( X e. B -> ( F ` X ) = ( X |` V ) )