| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummatr01.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 2 |
|
gsummatr01.r |
⊢ 𝑅 = { 𝑟 ∈ 𝑃 ∣ ( 𝑟 ‘ 𝐾 ) = 𝐿 } |
| 3 |
|
gsummatr01.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
|
gsummatr01.s |
⊢ 𝑆 = ( Base ‘ 𝐺 ) |
| 5 |
|
eqidd |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 0 , 𝐵 ) , ( 𝑖 𝐴 𝑗 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 0 , 𝐵 ) , ( 𝑖 𝐴 𝑗 ) ) ) ) |
| 6 |
|
eqeq1 |
⊢ ( 𝑖 = 𝑛 → ( 𝑖 = 𝐾 ↔ 𝑛 = 𝐾 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑖 = 𝑛 ∧ 𝑗 = ( 𝑄 ‘ 𝑛 ) ) → ( 𝑖 = 𝐾 ↔ 𝑛 = 𝐾 ) ) |
| 8 |
|
eqeq1 |
⊢ ( 𝑗 = ( 𝑄 ‘ 𝑛 ) → ( 𝑗 = 𝐿 ↔ ( 𝑄 ‘ 𝑛 ) = 𝐿 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑖 = 𝑛 ∧ 𝑗 = ( 𝑄 ‘ 𝑛 ) ) → ( 𝑗 = 𝐿 ↔ ( 𝑄 ‘ 𝑛 ) = 𝐿 ) ) |
| 10 |
9
|
ifbid |
⊢ ( ( 𝑖 = 𝑛 ∧ 𝑗 = ( 𝑄 ‘ 𝑛 ) ) → if ( 𝑗 = 𝐿 , 0 , 𝐵 ) = if ( ( 𝑄 ‘ 𝑛 ) = 𝐿 , 0 , 𝐵 ) ) |
| 11 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑛 ∧ 𝑗 = ( 𝑄 ‘ 𝑛 ) ) → ( 𝑖 𝐴 𝑗 ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) |
| 12 |
7 10 11
|
ifbieq12d |
⊢ ( ( 𝑖 = 𝑛 ∧ 𝑗 = ( 𝑄 ‘ 𝑛 ) ) → if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 0 , 𝐵 ) , ( 𝑖 𝐴 𝑗 ) ) = if ( 𝑛 = 𝐾 , if ( ( 𝑄 ‘ 𝑛 ) = 𝐿 , 0 , 𝐵 ) , ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) ) |
| 13 |
|
eldifsni |
⊢ ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → 𝑛 ≠ 𝐾 ) |
| 14 |
13
|
neneqd |
⊢ ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → ¬ 𝑛 = 𝐾 ) |
| 15 |
14
|
iffalsed |
⊢ ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → if ( 𝑛 = 𝐾 , if ( ( 𝑄 ‘ 𝑛 ) = 𝐿 , 0 , 𝐵 ) , ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → if ( 𝑛 = 𝐾 , if ( ( 𝑄 ‘ 𝑛 ) = 𝐿 , 0 , 𝐵 ) , ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) |
| 17 |
12 16
|
sylan9eqr |
⊢ ( ( ( 𝑄 ∈ 𝑅 ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝑖 = 𝑛 ∧ 𝑗 = ( 𝑄 ‘ 𝑛 ) ) ) → if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 0 , 𝐵 ) , ( 𝑖 𝐴 𝑗 ) ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) |
| 18 |
|
eldifi |
⊢ ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → 𝑛 ∈ 𝑁 ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → 𝑛 ∈ 𝑁 ) |
| 20 |
1 2
|
gsummatr01lem1 |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑛 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ) |
| 21 |
18 20
|
sylan2 |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ) |
| 22 |
|
ovexd |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ∈ V ) |
| 23 |
5 17 19 21 22
|
ovmpod |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 0 , 𝐵 ) , ( 𝑖 𝐴 𝑗 ) ) ) ( 𝑄 ‘ 𝑛 ) ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) |
| 24 |
23
|
ex |
⊢ ( 𝑄 ∈ 𝑅 → ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 0 , 𝐵 ) , ( 𝑖 𝐴 𝑗 ) ) ) ( 𝑄 ‘ 𝑛 ) ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) → ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 0 , 𝐵 ) , ( 𝑖 𝐴 𝑗 ) ) ) ( 𝑄 ‘ 𝑛 ) ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) ) |
| 26 |
25
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) → ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 0 , 𝐵 ) , ( 𝑖 𝐴 𝑗 ) ) ) ( 𝑄 ‘ 𝑛 ) ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) ) |
| 27 |
26
|
imp |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 0 , 𝐵 ) , ( 𝑖 𝐴 𝑗 ) ) ) ( 𝑄 ‘ 𝑛 ) ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) |
| 28 |
|
eqidd |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝐿 } ) ↦ ( 𝑖 𝐴 𝑗 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝐿 } ) ↦ ( 𝑖 𝐴 𝑗 ) ) ) |
| 29 |
11
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ ( 𝑖 = 𝑛 ∧ 𝑗 = ( 𝑄 ‘ 𝑛 ) ) ) → ( 𝑖 𝐴 𝑗 ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) |
| 30 |
|
eqidd |
⊢ ( ( ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) ∧ 𝑖 = 𝑛 ) → ( 𝑁 ∖ { 𝐿 } ) = ( 𝑁 ∖ { 𝐿 } ) ) |
| 31 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) |
| 32 |
|
fveq1 |
⊢ ( 𝑟 = 𝑄 → ( 𝑟 ‘ 𝐾 ) = ( 𝑄 ‘ 𝐾 ) ) |
| 33 |
32
|
eqeq1d |
⊢ ( 𝑟 = 𝑄 → ( ( 𝑟 ‘ 𝐾 ) = 𝐿 ↔ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
| 34 |
33 2
|
elrab2 |
⊢ ( 𝑄 ∈ 𝑅 ↔ ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ) |
| 35 |
|
simpll |
⊢ ( ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ∧ ( 𝐿 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) ) → 𝑄 ∈ 𝑃 ) |
| 36 |
|
eqid |
⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) |
| 37 |
36 1
|
symgfv |
⊢ ( ( 𝑄 ∈ 𝑃 ∧ 𝑛 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ) |
| 38 |
35 18 37
|
syl2an |
⊢ ( ( ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ∧ ( 𝐿 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ) |
| 39 |
35
|
adantr |
⊢ ( ( ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ∧ ( 𝐿 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → 𝑄 ∈ 𝑃 ) |
| 40 |
|
simplrr |
⊢ ( ( ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ∧ ( 𝐿 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → 𝐾 ∈ 𝑁 ) |
| 41 |
18
|
adantl |
⊢ ( ( ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ∧ ( 𝐿 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → 𝑛 ∈ 𝑁 ) |
| 42 |
39 40 41
|
3jca |
⊢ ( ( ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ∧ ( 𝐿 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄 ∈ 𝑃 ∧ 𝐾 ∈ 𝑁 ∧ 𝑛 ∈ 𝑁 ) ) |
| 43 |
|
simpllr |
⊢ ( ( ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ∧ ( 𝐿 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄 ‘ 𝐾 ) = 𝐿 ) |
| 44 |
13
|
adantl |
⊢ ( ( ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ∧ ( 𝐿 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → 𝑛 ≠ 𝐾 ) |
| 45 |
36 1
|
symgfvne |
⊢ ( ( 𝑄 ∈ 𝑃 ∧ 𝐾 ∈ 𝑁 ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑄 ‘ 𝐾 ) = 𝐿 → ( 𝑛 ≠ 𝐾 → ( 𝑄 ‘ 𝑛 ) ≠ 𝐿 ) ) ) |
| 46 |
42 43 44 45
|
syl3c |
⊢ ( ( ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ∧ ( 𝐿 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄 ‘ 𝑛 ) ≠ 𝐿 ) |
| 47 |
38 46
|
jca |
⊢ ( ( ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) ∧ ( 𝐿 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑛 ) ≠ 𝐿 ) ) |
| 48 |
47
|
exp42 |
⊢ ( ( 𝑄 ∈ 𝑃 ∧ ( 𝑄 ‘ 𝐾 ) = 𝐿 ) → ( 𝐿 ∈ 𝑁 → ( 𝐾 ∈ 𝑁 → ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑛 ) ≠ 𝐿 ) ) ) ) ) |
| 49 |
34 48
|
sylbi |
⊢ ( 𝑄 ∈ 𝑅 → ( 𝐿 ∈ 𝑁 → ( 𝐾 ∈ 𝑁 → ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑛 ) ≠ 𝐿 ) ) ) ) ) |
| 50 |
49
|
3imp31 |
⊢ ( ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) → ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑛 ) ≠ 𝐿 ) ) ) |
| 51 |
50
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) → ( 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) → ( ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑛 ) ≠ 𝐿 ) ) ) |
| 52 |
51
|
imp |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑛 ) ≠ 𝐿 ) ) |
| 53 |
|
eldifsn |
⊢ ( ( 𝑄 ‘ 𝑛 ) ∈ ( 𝑁 ∖ { 𝐿 } ) ↔ ( ( 𝑄 ‘ 𝑛 ) ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑛 ) ≠ 𝐿 ) ) |
| 54 |
52 53
|
sylibr |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑄 ‘ 𝑛 ) ∈ ( 𝑁 ∖ { 𝐿 } ) ) |
| 55 |
|
ovexd |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ∈ V ) |
| 56 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) |
| 57 |
|
nfra1 |
⊢ Ⅎ 𝑖 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 |
| 58 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑆 |
| 59 |
58
|
nfel2 |
⊢ Ⅎ 𝑖 𝐵 ∈ 𝑆 |
| 60 |
57 59
|
nfan |
⊢ Ⅎ 𝑖 ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) |
| 61 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) |
| 62 |
56 60 61
|
nf3an |
⊢ Ⅎ 𝑖 ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) |
| 63 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑁 ∖ { 𝐾 } ) |
| 64 |
63
|
nfel2 |
⊢ Ⅎ 𝑖 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) |
| 65 |
62 64
|
nfan |
⊢ Ⅎ 𝑖 ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) |
| 66 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) |
| 67 |
|
nfra2w |
⊢ Ⅎ 𝑗 ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 |
| 68 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑆 |
| 69 |
68
|
nfel2 |
⊢ Ⅎ 𝑗 𝐵 ∈ 𝑆 |
| 70 |
67 69
|
nfan |
⊢ Ⅎ 𝑗 ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) |
| 71 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) |
| 72 |
66 70 71
|
nf3an |
⊢ Ⅎ 𝑗 ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) |
| 73 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝑁 ∖ { 𝐾 } ) |
| 74 |
73
|
nfel2 |
⊢ Ⅎ 𝑗 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) |
| 75 |
72 74
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) |
| 76 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑛 |
| 77 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑄 ‘ 𝑛 ) |
| 78 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) |
| 79 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) |
| 80 |
28 29 30 31 54 55 65 75 76 77 78 79
|
ovmpodxf |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑛 ( 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝐿 } ) ↦ ( 𝑖 𝐴 𝑗 ) ) ( 𝑄 ‘ 𝑛 ) ) = ( 𝑛 𝐴 ( 𝑄 ‘ 𝑛 ) ) ) |
| 81 |
27 80
|
eqtr4d |
⊢ ( ( ( ( 𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin ) ∧ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ) ∧ ( 𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑄 ∈ 𝑅 ) ) ∧ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ) → ( 𝑛 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐾 , if ( 𝑗 = 𝐿 , 0 , 𝐵 ) , ( 𝑖 𝐴 𝑗 ) ) ) ( 𝑄 ‘ 𝑛 ) ) = ( 𝑛 ( 𝑖 ∈ ( 𝑁 ∖ { 𝐾 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝐿 } ) ↦ ( 𝑖 𝐴 𝑗 ) ) ( 𝑄 ‘ 𝑛 ) ) ) |