Metamath Proof Explorer
		
		
		
		Description:  If x is not free in ph , ps , and ch , then it is not
       free in ( ph /\ ps /\ ch ) .  (Contributed by Mario Carneiro, 11-Aug-2016)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						nfan.1 | 
						⊢ Ⅎ 𝑥 𝜑  | 
					
					
						 | 
						 | 
						nfan.2 | 
						⊢ Ⅎ 𝑥 𝜓  | 
					
					
						 | 
						 | 
						nfan.3 | 
						⊢ Ⅎ 𝑥 𝜒  | 
					
				
					 | 
					Assertion | 
					nf3an | 
					⊢  Ⅎ 𝑥 ( 𝜑  ∧  𝜓  ∧  𝜒 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nfan.1 | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							nfan.2 | 
							⊢ Ⅎ 𝑥 𝜓  | 
						
						
							| 3 | 
							
								
							 | 
							nfan.3 | 
							⊢ Ⅎ 𝑥 𝜒  | 
						
						
							| 4 | 
							
								
							 | 
							df-3an | 
							⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 ) )  | 
						
						
							| 5 | 
							
								1 2
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝜓 )  | 
						
						
							| 6 | 
							
								5 3
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							nfxfr | 
							⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝜓  ∧  𝜒 )  |