Metamath Proof Explorer
Description: If x is not free in ph , ps , and ch , then it is not
free in ( ph /\ ps /\ ch ) . (Contributed by Mario Carneiro, 11-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
nfan.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
nfan.2 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
nfan.3 |
⊢ Ⅎ 𝑥 𝜒 |
|
Assertion |
nf3an |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfan.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
nfan.2 |
⊢ Ⅎ 𝑥 𝜓 |
3 |
|
nfan.3 |
⊢ Ⅎ 𝑥 𝜒 |
4 |
|
df-3an |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
5 |
1 2
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜓 ) |
6 |
5 3
|
nfan |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) |
7 |
4 6
|
nfxfr |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) |