Metamath Proof Explorer


Theorem nf3an

Description: If x is not free in ph , ps , and ch , then it is not free in ( ph /\ ps /\ ch ) . (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses nfan.1
|- F/ x ph
nfan.2
|- F/ x ps
nfan.3
|- F/ x ch
Assertion nf3an
|- F/ x ( ph /\ ps /\ ch )

Proof

Step Hyp Ref Expression
1 nfan.1
 |-  F/ x ph
2 nfan.2
 |-  F/ x ps
3 nfan.3
 |-  F/ x ch
4 df-3an
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )
5 1 2 nfan
 |-  F/ x ( ph /\ ps )
6 5 3 nfan
 |-  F/ x ( ( ph /\ ps ) /\ ch )
7 4 6 nfxfr
 |-  F/ x ( ph /\ ps /\ ch )