Metamath Proof Explorer


Theorem nfbid

Description: If in a context x is not free in ps and ch , then it is not free in ( ps <-> ch ) . (Contributed by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 29-Dec-2017)

Ref Expression
Hypotheses nfbid.1
|- ( ph -> F/ x ps )
nfbid.2
|- ( ph -> F/ x ch )
Assertion nfbid
|- ( ph -> F/ x ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 nfbid.1
 |-  ( ph -> F/ x ps )
2 nfbid.2
 |-  ( ph -> F/ x ch )
3 dfbi2
 |-  ( ( ps <-> ch ) <-> ( ( ps -> ch ) /\ ( ch -> ps ) ) )
4 1 2 nfimd
 |-  ( ph -> F/ x ( ps -> ch ) )
5 2 1 nfimd
 |-  ( ph -> F/ x ( ch -> ps ) )
6 4 5 nfand
 |-  ( ph -> F/ x ( ( ps -> ch ) /\ ( ch -> ps ) ) )
7 3 6 nfxfrd
 |-  ( ph -> F/ x ( ps <-> ch ) )