Metamath Proof Explorer


Theorem nfxfrd

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses nfbii.1
|- ( ph <-> ps )
nfxfrd.2
|- ( ch -> F/ x ps )
Assertion nfxfrd
|- ( ch -> F/ x ph )

Proof

Step Hyp Ref Expression
1 nfbii.1
 |-  ( ph <-> ps )
2 nfxfrd.2
 |-  ( ch -> F/ x ps )
3 1 nfbii
 |-  ( F/ x ph <-> F/ x ps )
4 2 3 sylibr
 |-  ( ch -> F/ x ph )