Metamath Proof Explorer


Theorem nfbii

Description: Equality theorem for the nonfreeness predicate. (Contributed by Mario Carneiro, 11-Aug-2016) df-nf changed. (Revised by Wolf Lammen, 12-Sep-2021)

Ref Expression
Hypothesis nfbii.1
|- ( ph <-> ps )
Assertion nfbii
|- ( F/ x ph <-> F/ x ps )

Proof

Step Hyp Ref Expression
1 nfbii.1
 |-  ( ph <-> ps )
2 nfbiit
 |-  ( A. x ( ph <-> ps ) -> ( F/ x ph <-> F/ x ps ) )
3 2 1 mpg
 |-  ( F/ x ph <-> F/ x ps )