Metamath Proof Explorer


Theorem nfbid

Description: If in a context x is not free in ps and ch , then it is not free in ( ps <-> ch ) . (Contributed by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 29-Dec-2017)

Ref Expression
Hypotheses nfbid.1 φxψ
nfbid.2 φxχ
Assertion nfbid φxψχ

Proof

Step Hyp Ref Expression
1 nfbid.1 φxψ
2 nfbid.2 φxχ
3 dfbi2 ψχψχχψ
4 1 2 nfimd φxψχ
5 2 1 nfimd φxχψ
6 4 5 nfand φxψχχψ
7 3 6 nfxfrd φxψχ