Metamath Proof Explorer


Theorem nfand

Description: If in a context x is not free in ps and ch , then it is not free in ( ps /\ ch ) . (Contributed by Mario Carneiro, 7-Oct-2016)

Ref Expression
Hypotheses nfand.1 φ x ψ
nfand.2 φ x χ
Assertion nfand φ x ψ χ

Proof

Step Hyp Ref Expression
1 nfand.1 φ x ψ
2 nfand.2 φ x χ
3 df-an ψ χ ¬ ψ ¬ χ
4 2 nfnd φ x ¬ χ
5 1 4 nfimd φ x ψ ¬ χ
6 5 nfnd φ x ¬ ψ ¬ χ
7 3 6 nfxfrd φ x ψ χ