Metamath Proof Explorer


Theorem nfra2w

Description: Similar to Lemma 24 of Monk2 p. 114, except the quantification of the antecedent is restricted. Derived automatically from hbra2VD . Version of nfra2 with a disjoint variable condition, which does not require ax-13 . (Contributed by Alan Sare, 31-Dec-2011) (Revised by Gino Giotto, 24-Sep-2024)

Ref Expression
Assertion nfra2w 𝑦𝑥𝐴𝑦𝐵 𝜑

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦𝐵 𝜑 ) )
2 df-ral ( ∀ 𝑦𝐵 𝜑 ↔ ∀ 𝑦 ( 𝑦𝐵𝜑 ) )
3 2 imbi2i ( ( 𝑥𝐴 → ∀ 𝑦𝐵 𝜑 ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
4 3 albii ( ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦𝐵 𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
5 1 4 bitri ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
6 nfa1 𝑦𝑦𝑥 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) )
7 alcom ( ∀ 𝑦𝑥 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) ↔ ∀ 𝑥𝑦 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) )
8 19.21v ( ∀ 𝑦 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) ↔ ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
9 8 albii ( ∀ 𝑥𝑦 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
10 7 9 bitri ( ∀ 𝑦𝑥 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
11 10 nfbii ( Ⅎ 𝑦𝑦𝑥 ( 𝑥𝐴 → ( 𝑦𝐵𝜑 ) ) ↔ Ⅎ 𝑦𝑥 ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) ) )
12 6 11 mpbi 𝑦𝑥 ( 𝑥𝐴 → ∀ 𝑦 ( 𝑦𝐵𝜑 ) )
13 5 12 nfxfr 𝑦𝑥𝐴𝑦𝐵 𝜑