| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetr0.d |
|
| 2 |
|
mdetr0.k |
|
| 3 |
|
mdetr0.z |
|
| 4 |
|
mdetr0.r |
|
| 5 |
|
mdetr0.n |
|
| 6 |
|
mdetr0.x |
|
| 7 |
|
mdetr0.i |
|
| 8 |
|
eqid |
|
| 9 |
|
crngring |
|
| 10 |
4 9
|
syl |
|
| 11 |
2 3
|
ring0cl |
|
| 12 |
10 11
|
syl |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
1 2 8 4 5 13 6 12 7
|
mdetrsca2 |
|
| 15 |
2 8 3
|
ringlz |
|
| 16 |
10 12 15
|
syl2anc |
|
| 17 |
16
|
ifeq1d |
|
| 18 |
17
|
mpoeq3dv |
|
| 19 |
18
|
fveq2d |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
1 20 21 2
|
mdetf |
|
| 23 |
4 22
|
syl |
|
| 24 |
13 6
|
ifcld |
|
| 25 |
20 2 21 5 4 24
|
matbas2d |
|
| 26 |
23 25
|
ffvelcdmd |
|
| 27 |
2 8 3
|
ringlz |
|
| 28 |
10 26 27
|
syl2anc |
|
| 29 |
14 19 28
|
3eqtr3d |
|