Metamath Proof Explorer


Theorem mdetrsca2

Description: The determinant function is homogeneous for each row (matrices are given explicitly by their entries). (Contributed by SO, 16-Jul-2018)

Ref Expression
Hypotheses mdetrsca2.d D = N maDet R
mdetrsca2.k K = Base R
mdetrsca2.t · ˙ = R
mdetrsca2.r φ R CRing
mdetrsca2.n φ N Fin
mdetrsca2.x φ i N j N X K
mdetrsca2.y φ i N j N Y K
mdetrsca2.f φ F K
mdetrsca2.i φ I N
Assertion mdetrsca2 φ D i N , j N if i = I F · ˙ X Y = F · ˙ D i N , j N if i = I X Y

Proof

Step Hyp Ref Expression
1 mdetrsca2.d D = N maDet R
2 mdetrsca2.k K = Base R
3 mdetrsca2.t · ˙ = R
4 mdetrsca2.r φ R CRing
5 mdetrsca2.n φ N Fin
6 mdetrsca2.x φ i N j N X K
7 mdetrsca2.y φ i N j N Y K
8 mdetrsca2.f φ F K
9 mdetrsca2.i φ I N
10 eqid N Mat R = N Mat R
11 eqid Base N Mat R = Base N Mat R
12 crngring R CRing R Ring
13 4 12 syl φ R Ring
14 13 3ad2ant1 φ i N j N R Ring
15 8 3ad2ant1 φ i N j N F K
16 2 3 ringcl R Ring F K X K F · ˙ X K
17 14 15 6 16 syl3anc φ i N j N F · ˙ X K
18 17 7 ifcld φ i N j N if i = I F · ˙ X Y K
19 10 2 11 5 4 18 matbas2d φ i N , j N if i = I F · ˙ X Y Base N Mat R
20 6 7 ifcld φ i N j N if i = I X Y K
21 10 2 11 5 4 20 matbas2d φ i N , j N if i = I X Y Base N Mat R
22 snex I V
23 22 a1i φ I V
24 8 3ad2ant1 φ i I j N F K
25 9 snssd φ I N
26 25 sselda φ i I i N
27 26 3adant3 φ i I j N i N
28 27 6 syld3an2 φ i I j N X K
29 fconstmpo I × N × F = i I , j N F
30 29 a1i φ I × N × F = i I , j N F
31 eqidd φ i I , j N X = i I , j N X
32 23 5 24 28 30 31 offval22 φ I × N × F · ˙ f i I , j N X = i I , j N F · ˙ X
33 mposnif i I , j N if i = I X Y = i I , j N X
34 33 oveq2i I × N × F · ˙ f i I , j N if i = I X Y = I × N × F · ˙ f i I , j N X
35 mposnif i I , j N if i = I F · ˙ X Y = i I , j N F · ˙ X
36 32 34 35 3eqtr4g φ I × N × F · ˙ f i I , j N if i = I X Y = i I , j N if i = I F · ˙ X Y
37 ssid N N
38 resmpo I N N N i N , j N if i = I X Y I × N = i I , j N if i = I X Y
39 25 37 38 sylancl φ i N , j N if i = I X Y I × N = i I , j N if i = I X Y
40 39 oveq2d φ I × N × F · ˙ f i N , j N if i = I X Y I × N = I × N × F · ˙ f i I , j N if i = I X Y
41 resmpo I N N N i N , j N if i = I F · ˙ X Y I × N = i I , j N if i = I F · ˙ X Y
42 25 37 41 sylancl φ i N , j N if i = I F · ˙ X Y I × N = i I , j N if i = I F · ˙ X Y
43 36 40 42 3eqtr4rd φ i N , j N if i = I F · ˙ X Y I × N = I × N × F · ˙ f i N , j N if i = I X Y I × N
44 eldifsni i N I i I
45 44 3ad2ant2 φ i N I j N i I
46 45 neneqd φ i N I j N ¬ i = I
47 iffalse ¬ i = I if i = I F · ˙ X Y = Y
48 iffalse ¬ i = I if i = I X Y = Y
49 47 48 eqtr4d ¬ i = I if i = I F · ˙ X Y = if i = I X Y
50 46 49 syl φ i N I j N if i = I F · ˙ X Y = if i = I X Y
51 50 mpoeq3dva φ i N I , j N if i = I F · ˙ X Y = i N I , j N if i = I X Y
52 difss N I N
53 resmpo N I N N N i N , j N if i = I F · ˙ X Y N I × N = i N I , j N if i = I F · ˙ X Y
54 52 37 53 mp2an i N , j N if i = I F · ˙ X Y N I × N = i N I , j N if i = I F · ˙ X Y
55 resmpo N I N N N i N , j N if i = I X Y N I × N = i N I , j N if i = I X Y
56 52 37 55 mp2an i N , j N if i = I X Y N I × N = i N I , j N if i = I X Y
57 51 54 56 3eqtr4g φ i N , j N if i = I F · ˙ X Y N I × N = i N , j N if i = I X Y N I × N
58 1 10 11 2 3 4 19 8 21 9 43 57 mdetrsca φ D i N , j N if i = I F · ˙ X Y = F · ˙ D i N , j N if i = I X Y