Metamath Proof Explorer


Theorem fconstmpo

Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018)

Ref Expression
Assertion fconstmpo A×B×C=xA,yBC

Proof

Step Hyp Ref Expression
1 fconstmpt A×B×C=zA×BC
2 eqidd z=xyC=C
3 2 mpompt zA×BC=xA,yBC
4 1 3 eqtri A×B×C=xA,yBC