Step |
Hyp |
Ref |
Expression |
1 |
|
mdet0.d |
|
2 |
|
mdet0.a |
|
3 |
|
mdet0.z |
|
4 |
|
mdet0.0 |
|
5 |
|
n0 |
|
6 |
|
crngring |
|
7 |
6
|
anim1ci |
|
8 |
7
|
adantr |
|
9 |
2 4
|
mat0op |
|
10 |
3 9
|
eqtrid |
|
11 |
8 10
|
syl |
|
12 |
11
|
fveq2d |
|
13 |
|
ifid |
|
14 |
13
|
eqcomi |
|
15 |
14
|
a1i |
|
16 |
15
|
mpoeq3dv |
|
17 |
16
|
fveq2d |
|
18 |
|
eqid |
|
19 |
|
simpll |
|
20 |
|
simpr |
|
21 |
20
|
adantr |
|
22 |
|
ringmnd |
|
23 |
6 22
|
syl |
|
24 |
23
|
adantr |
|
25 |
18 4
|
mndidcl |
|
26 |
24 25
|
syl |
|
27 |
26
|
adantr |
|
28 |
27
|
3ad2ant1 |
|
29 |
|
simpr |
|
30 |
1 18 4 19 21 28 29
|
mdetr0 |
|
31 |
12 17 30
|
3eqtrd |
|
32 |
31
|
ex |
|
33 |
32
|
exlimdv |
|
34 |
5 33
|
syl5bi |
|
35 |
34
|
3impia |
|