Metamath Proof Explorer


Theorem mat0op

Description: Value of a zero matrix as operation. (Contributed by AV, 2-Dec-2018)

Ref Expression
Hypotheses mat0op.a A=NMatR
mat0op.z 0˙=0R
Assertion mat0op NFinRRing0A=iN,jN0˙

Proof

Step Hyp Ref Expression
1 mat0op.a A=NMatR
2 mat0op.z 0˙=0R
3 eqid RfreeLModN×N=RfreeLModN×N
4 1 3 mat0 NFinRRing0RfreeLModN×N=0A
5 fconstmpo N×N×0R=iN,jN0R
6 simpr NFinRRingRRing
7 sqxpexg NFinN×NV
8 7 adantr NFinRRingN×NV
9 eqid 0R=0R
10 3 9 frlm0 RRingN×NVN×N×0R=0RfreeLModN×N
11 6 8 10 syl2anc NFinRRingN×N×0R=0RfreeLModN×N
12 2 eqcomi 0R=0˙
13 12 a1i iNjN0R=0˙
14 13 mpoeq3ia iN,jN0R=iN,jN0˙
15 14 a1i NFinRRingiN,jN0R=iN,jN0˙
16 5 11 15 3eqtr3a NFinRRing0RfreeLModN×N=iN,jN0˙
17 4 16 eqtr3d NFinRRing0A=iN,jN0˙