| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdet0.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
| 2 |
|
mdet0.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 3 |
|
mdet0.z |
⊢ 𝑍 = ( 0g ‘ 𝐴 ) |
| 4 |
|
mdet0.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
n0 |
⊢ ( 𝑁 ≠ ∅ ↔ ∃ 𝑖 𝑖 ∈ 𝑁 ) |
| 6 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 7 |
6
|
anim1ci |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 9 |
2 4
|
mat0op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝐴 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) |
| 10 |
3 9
|
eqtrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑍 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) |
| 11 |
8 10
|
syl |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑍 = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) |
| 12 |
11
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ 𝑍 ) = ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) ) |
| 13 |
|
ifid |
⊢ if ( 𝑥 = 𝑖 , 0 , 0 ) = 0 |
| 14 |
13
|
eqcomi |
⊢ 0 = if ( 𝑥 = 𝑖 , 0 , 0 ) |
| 15 |
14
|
a1i |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 0 = if ( 𝑥 = 𝑖 , 0 , 0 ) ) |
| 16 |
15
|
mpoeq3dv |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) = ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑖 , 0 , 0 ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ 0 ) ) = ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑖 , 0 , 0 ) ) ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 19 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑅 ∈ CRing ) |
| 20 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝑁 ∈ Fin ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑁 ∈ Fin ) |
| 22 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
| 23 |
6 22
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Mnd ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝑅 ∈ Mnd ) |
| 25 |
18 4
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) ∧ 𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑁 ) → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 30 |
1 18 4 19 21 28 29
|
mdetr0 |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ ( 𝑥 ∈ 𝑁 , 𝑦 ∈ 𝑁 ↦ if ( 𝑥 = 𝑖 , 0 , 0 ) ) ) = 0 ) |
| 31 |
12 17 30
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑖 ∈ 𝑁 ) → ( 𝐷 ‘ 𝑍 ) = 0 ) |
| 32 |
31
|
ex |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑖 ∈ 𝑁 → ( 𝐷 ‘ 𝑍 ) = 0 ) ) |
| 33 |
32
|
exlimdv |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ∃ 𝑖 𝑖 ∈ 𝑁 → ( 𝐷 ‘ 𝑍 ) = 0 ) ) |
| 34 |
5 33
|
biimtrid |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑁 ≠ ∅ → ( 𝐷 ‘ 𝑍 ) = 0 ) ) |
| 35 |
34
|
3impia |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅ ) → ( 𝐷 ‘ 𝑍 ) = 0 ) |