| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetrlin2.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
| 2 |
|
mdetrlin2.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 3 |
|
mdetrlin2.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 4 |
|
mdetrlin2.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 5 |
|
mdetrlin2.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 6 |
|
mdetrlin2.x |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
| 7 |
|
mdetrlin2.y |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) |
| 8 |
|
mdetrlin2.z |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑍 ∈ 𝐾 ) |
| 9 |
|
mdetrlin2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑁 ) |
| 10 |
|
eqid |
⊢ ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) ) |
| 12 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 15 |
2 3
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
| 16 |
14 6 7 15
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
| 17 |
16 8
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ∈ 𝐾 ) |
| 18 |
10 2 11 5 4 17
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 19 |
6 8
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ∈ 𝐾 ) |
| 20 |
10 2 11 5 4 19
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 21 |
7 8
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ∈ 𝐾 ) |
| 22 |
10 2 11 5 4 21
|
matbas2d |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ∈ ( Base ‘ ( 𝑁 Mat 𝑅 ) ) ) |
| 23 |
|
snex |
⊢ { 𝐼 } ∈ V |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → { 𝐼 } ∈ V ) |
| 25 |
9
|
snssd |
⊢ ( 𝜑 → { 𝐼 } ⊆ 𝑁 ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → { 𝐼 } ⊆ 𝑁 ) |
| 27 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ { 𝐼 } ) |
| 28 |
26 27
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
| 29 |
28 6
|
syld3an2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝑋 ∈ 𝐾 ) |
| 30 |
28 7
|
syld3an2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ { 𝐼 } ∧ 𝑗 ∈ 𝑁 ) → 𝑌 ∈ 𝐾 ) |
| 31 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ) |
| 32 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) ) |
| 33 |
24 5 29 30 31 32
|
offval22 |
⊢ ( 𝜑 → ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ ( 𝑋 + 𝑌 ) ) ) |
| 34 |
33
|
eqcomd |
⊢ ( 𝜑 → ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ ( 𝑋 + 𝑌 ) ) = ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) ) ) |
| 35 |
|
mposnif |
⊢ ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ ( 𝑋 + 𝑌 ) ) |
| 36 |
|
mposnif |
⊢ ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) |
| 37 |
|
mposnif |
⊢ ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) |
| 38 |
36 37
|
oveq12i |
⊢ ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) = ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑋 ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ 𝑌 ) ) |
| 39 |
34 35 38
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) = ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) ) |
| 40 |
|
ssid |
⊢ 𝑁 ⊆ 𝑁 |
| 41 |
|
resmpo |
⊢ ( ( { 𝐼 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ) |
| 42 |
25 40 41
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ) |
| 43 |
|
resmpo |
⊢ ( ( { 𝐼 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) |
| 44 |
25 40 43
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) |
| 45 |
|
resmpo |
⊢ ( ( { 𝐼 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) |
| 46 |
25 40 45
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) |
| 47 |
44 46
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) ∘f + ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) ) = ( ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ∘f + ( 𝑖 ∈ { 𝐼 } , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) ) |
| 48 |
39 42 47
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) = ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) ∘f + ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( { 𝐼 } × 𝑁 ) ) ) ) |
| 49 |
|
eldifsni |
⊢ ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) → 𝑖 ≠ 𝐼 ) |
| 50 |
49
|
neneqd |
⊢ ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) → ¬ 𝑖 = 𝐼 ) |
| 51 |
|
iffalse |
⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = 𝑍 ) |
| 52 |
|
iffalse |
⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) = 𝑍 ) |
| 53 |
51 52
|
eqtr4d |
⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) |
| 54 |
50 53
|
syl |
⊢ ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) |
| 55 |
54
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) |
| 56 |
55
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) |
| 57 |
|
difss |
⊢ ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 |
| 58 |
|
resmpo |
⊢ ( ( ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ) |
| 59 |
57 40 58
|
mp2an |
⊢ ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) |
| 60 |
|
resmpo |
⊢ ( ( ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) |
| 61 |
57 40 60
|
mp2an |
⊢ ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) |
| 62 |
56 59 61
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) ) |
| 63 |
|
iffalse |
⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) = 𝑍 ) |
| 64 |
51 63
|
eqtr4d |
⊢ ( ¬ 𝑖 = 𝐼 → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) |
| 65 |
50 64
|
syl |
⊢ ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) |
| 66 |
65
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) ∧ 𝑗 ∈ 𝑁 ) → if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) = if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) |
| 67 |
66
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) |
| 68 |
|
resmpo |
⊢ ( ( ( 𝑁 ∖ { 𝐼 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) |
| 69 |
57 40 68
|
mp2an |
⊢ ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝐼 } ) , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) |
| 70 |
67 59 69
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) = ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ↾ ( ( 𝑁 ∖ { 𝐼 } ) × 𝑁 ) ) ) |
| 71 |
1 10 11 3 4 18 20 22 9 48 62 70
|
mdetrlin |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , ( 𝑋 + 𝑌 ) , 𝑍 ) ) ) = ( ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑋 , 𝑍 ) ) ) + ( 𝐷 ‘ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝐼 , 𝑌 , 𝑍 ) ) ) ) ) |