Metamath Proof Explorer


Theorem mposnif

Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019)

Ref Expression
Assertion mposnif ( 𝑖 ∈ { 𝑋 } , 𝑗𝐵 ↦ if ( 𝑖 = 𝑋 , 𝐶 , 𝐷 ) ) = ( 𝑖 ∈ { 𝑋 } , 𝑗𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 elsni ( 𝑖 ∈ { 𝑋 } → 𝑖 = 𝑋 )
2 1 adantr ( ( 𝑖 ∈ { 𝑋 } ∧ 𝑗𝐵 ) → 𝑖 = 𝑋 )
3 2 iftrued ( ( 𝑖 ∈ { 𝑋 } ∧ 𝑗𝐵 ) → if ( 𝑖 = 𝑋 , 𝐶 , 𝐷 ) = 𝐶 )
4 3 mpoeq3ia ( 𝑖 ∈ { 𝑋 } , 𝑗𝐵 ↦ if ( 𝑖 = 𝑋 , 𝐶 , 𝐷 ) ) = ( 𝑖 ∈ { 𝑋 } , 𝑗𝐵𝐶 )