| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdet0.d |
|- D = ( N maDet R ) |
| 2 |
|
mdet0.a |
|- A = ( N Mat R ) |
| 3 |
|
mdet0.z |
|- Z = ( 0g ` A ) |
| 4 |
|
mdet0.0 |
|- .0. = ( 0g ` R ) |
| 5 |
|
n0 |
|- ( N =/= (/) <-> E. i i e. N ) |
| 6 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 7 |
6
|
anim1ci |
|- ( ( R e. CRing /\ N e. Fin ) -> ( N e. Fin /\ R e. Ring ) ) |
| 8 |
7
|
adantr |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( N e. Fin /\ R e. Ring ) ) |
| 9 |
2 4
|
mat0op |
|- ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( x e. N , y e. N |-> .0. ) ) |
| 10 |
3 9
|
eqtrid |
|- ( ( N e. Fin /\ R e. Ring ) -> Z = ( x e. N , y e. N |-> .0. ) ) |
| 11 |
8 10
|
syl |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> Z = ( x e. N , y e. N |-> .0. ) ) |
| 12 |
11
|
fveq2d |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` Z ) = ( D ` ( x e. N , y e. N |-> .0. ) ) ) |
| 13 |
|
ifid |
|- if ( x = i , .0. , .0. ) = .0. |
| 14 |
13
|
eqcomi |
|- .0. = if ( x = i , .0. , .0. ) |
| 15 |
14
|
a1i |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> .0. = if ( x = i , .0. , .0. ) ) |
| 16 |
15
|
mpoeq3dv |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( x e. N , y e. N |-> .0. ) = ( x e. N , y e. N |-> if ( x = i , .0. , .0. ) ) ) |
| 17 |
16
|
fveq2d |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` ( x e. N , y e. N |-> .0. ) ) = ( D ` ( x e. N , y e. N |-> if ( x = i , .0. , .0. ) ) ) ) |
| 18 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 19 |
|
simpll |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> R e. CRing ) |
| 20 |
|
simpr |
|- ( ( R e. CRing /\ N e. Fin ) -> N e. Fin ) |
| 21 |
20
|
adantr |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> N e. Fin ) |
| 22 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
| 23 |
6 22
|
syl |
|- ( R e. CRing -> R e. Mnd ) |
| 24 |
23
|
adantr |
|- ( ( R e. CRing /\ N e. Fin ) -> R e. Mnd ) |
| 25 |
18 4
|
mndidcl |
|- ( R e. Mnd -> .0. e. ( Base ` R ) ) |
| 26 |
24 25
|
syl |
|- ( ( R e. CRing /\ N e. Fin ) -> .0. e. ( Base ` R ) ) |
| 27 |
26
|
adantr |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> .0. e. ( Base ` R ) ) |
| 28 |
27
|
3ad2ant1 |
|- ( ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) /\ x e. N /\ y e. N ) -> .0. e. ( Base ` R ) ) |
| 29 |
|
simpr |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> i e. N ) |
| 30 |
1 18 4 19 21 28 29
|
mdetr0 |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` ( x e. N , y e. N |-> if ( x = i , .0. , .0. ) ) ) = .0. ) |
| 31 |
12 17 30
|
3eqtrd |
|- ( ( ( R e. CRing /\ N e. Fin ) /\ i e. N ) -> ( D ` Z ) = .0. ) |
| 32 |
31
|
ex |
|- ( ( R e. CRing /\ N e. Fin ) -> ( i e. N -> ( D ` Z ) = .0. ) ) |
| 33 |
32
|
exlimdv |
|- ( ( R e. CRing /\ N e. Fin ) -> ( E. i i e. N -> ( D ` Z ) = .0. ) ) |
| 34 |
5 33
|
biimtrid |
|- ( ( R e. CRing /\ N e. Fin ) -> ( N =/= (/) -> ( D ` Z ) = .0. ) ) |
| 35 |
34
|
3impia |
|- ( ( R e. CRing /\ N e. Fin /\ N =/= (/) ) -> ( D ` Z ) = .0. ) |