Step |
Hyp |
Ref |
Expression |
1 |
|
m2detleiblem2.n |
|
2 |
|
m2detleiblem2.p |
|
3 |
|
m2detleiblem2.a |
|
4 |
|
m2detleiblem2.b |
|
5 |
|
m2detleiblem2.g |
|
6 |
|
m2detleiblem3.m |
|
7 |
|
eqid |
|
8 |
5 7
|
mgpbas |
|
9 |
5
|
fvexi |
|
10 |
9
|
a1i |
|
11 |
|
1ex |
|
12 |
|
2nn |
|
13 |
|
prex |
|
14 |
13
|
prid1 |
|
15 |
|
eqid |
|
16 |
15 2 1
|
symg2bas |
|
17 |
14 16
|
eleqtrrid |
|
18 |
11 12 17
|
mp2an |
|
19 |
|
eleq1 |
|
20 |
18 19
|
mpbiri |
|
21 |
1
|
oveq1i |
|
22 |
3 21
|
eqtri |
|
23 |
1
|
fveq2i |
|
24 |
23
|
fveq2i |
|
25 |
2 24
|
eqtri |
|
26 |
22 4 25
|
matepmcl |
|
27 |
20 26
|
syl3an2 |
|
28 |
1
|
mpteq1i |
|
29 |
28
|
fmpt |
|
30 |
27 29
|
sylib |
|
31 |
8 6 10 30
|
gsumpr12val |
|
32 |
11
|
prid1 |
|
33 |
32 1
|
eleqtrri |
|
34 |
3 4 2
|
matepmcl |
|
35 |
20 34
|
syl3an2 |
|
36 |
|
fveq2 |
|
37 |
|
id |
|
38 |
36 37
|
oveq12d |
|
39 |
38
|
eleq1d |
|
40 |
39
|
rspcva |
|
41 |
33 35 40
|
sylancr |
|
42 |
|
eqid |
|
43 |
38 42
|
fvmptg |
|
44 |
33 41 43
|
sylancr |
|
45 |
|
fveq1 |
|
46 |
|
1ne2 |
|
47 |
11 11
|
fvpr1 |
|
48 |
46 47
|
ax-mp |
|
49 |
45 48
|
eqtrdi |
|
50 |
49
|
3ad2ant2 |
|
51 |
50
|
oveq1d |
|
52 |
44 51
|
eqtrd |
|
53 |
|
2ex |
|
54 |
53
|
prid2 |
|
55 |
54 1
|
eleqtrri |
|
56 |
|
fveq2 |
|
57 |
|
id |
|
58 |
56 57
|
oveq12d |
|
59 |
58
|
eleq1d |
|
60 |
59
|
rspcva |
|
61 |
55 35 60
|
sylancr |
|
62 |
58 42
|
fvmptg |
|
63 |
55 61 62
|
sylancr |
|
64 |
|
fveq1 |
|
65 |
53 53
|
fvpr2 |
|
66 |
46 65
|
ax-mp |
|
67 |
64 66
|
eqtrdi |
|
68 |
67
|
3ad2ant2 |
|
69 |
68
|
oveq1d |
|
70 |
63 69
|
eqtrd |
|
71 |
52 70
|
oveq12d |
|
72 |
31 71
|
eqtrd |
|