Step |
Hyp |
Ref |
Expression |
1 |
|
m2detleiblem2.n |
|- N = { 1 , 2 } |
2 |
|
m2detleiblem2.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
3 |
|
m2detleiblem2.a |
|- A = ( N Mat R ) |
4 |
|
m2detleiblem2.b |
|- B = ( Base ` A ) |
5 |
|
m2detleiblem2.g |
|- G = ( mulGrp ` R ) |
6 |
|
m2detleiblem3.m |
|- .x. = ( +g ` G ) |
7 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
8 |
5 7
|
mgpbas |
|- ( Base ` R ) = ( Base ` G ) |
9 |
5
|
fvexi |
|- G e. _V |
10 |
9
|
a1i |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> G e. _V ) |
11 |
|
1ex |
|- 1 e. _V |
12 |
|
2nn |
|- 2 e. NN |
13 |
|
prex |
|- { <. 1 , 1 >. , <. 2 , 2 >. } e. _V |
14 |
13
|
prid1 |
|- { <. 1 , 1 >. , <. 2 , 2 >. } e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } |
15 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
16 |
15 2 1
|
symg2bas |
|- ( ( 1 e. _V /\ 2 e. NN ) -> P = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
17 |
14 16
|
eleqtrrid |
|- ( ( 1 e. _V /\ 2 e. NN ) -> { <. 1 , 1 >. , <. 2 , 2 >. } e. P ) |
18 |
11 12 17
|
mp2an |
|- { <. 1 , 1 >. , <. 2 , 2 >. } e. P |
19 |
|
eleq1 |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( Q e. P <-> { <. 1 , 1 >. , <. 2 , 2 >. } e. P ) ) |
20 |
18 19
|
mpbiri |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> Q e. P ) |
21 |
1
|
oveq1i |
|- ( N Mat R ) = ( { 1 , 2 } Mat R ) |
22 |
3 21
|
eqtri |
|- A = ( { 1 , 2 } Mat R ) |
23 |
1
|
fveq2i |
|- ( SymGrp ` N ) = ( SymGrp ` { 1 , 2 } ) |
24 |
23
|
fveq2i |
|- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` { 1 , 2 } ) ) |
25 |
2 24
|
eqtri |
|- P = ( Base ` ( SymGrp ` { 1 , 2 } ) ) |
26 |
22 4 25
|
matepmcl |
|- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> A. n e. { 1 , 2 } ( ( Q ` n ) M n ) e. ( Base ` R ) ) |
27 |
20 26
|
syl3an2 |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> A. n e. { 1 , 2 } ( ( Q ` n ) M n ) e. ( Base ` R ) ) |
28 |
1
|
mpteq1i |
|- ( n e. N |-> ( ( Q ` n ) M n ) ) = ( n e. { 1 , 2 } |-> ( ( Q ` n ) M n ) ) |
29 |
28
|
fmpt |
|- ( A. n e. { 1 , 2 } ( ( Q ` n ) M n ) e. ( Base ` R ) <-> ( n e. N |-> ( ( Q ` n ) M n ) ) : { 1 , 2 } --> ( Base ` R ) ) |
30 |
27 29
|
sylib |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( n e. N |-> ( ( Q ` n ) M n ) ) : { 1 , 2 } --> ( Base ` R ) ) |
31 |
8 6 10 30
|
gsumpr12val |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( G gsum ( n e. N |-> ( ( Q ` n ) M n ) ) ) = ( ( ( n e. N |-> ( ( Q ` n ) M n ) ) ` 1 ) .x. ( ( n e. N |-> ( ( Q ` n ) M n ) ) ` 2 ) ) ) |
32 |
11
|
prid1 |
|- 1 e. { 1 , 2 } |
33 |
32 1
|
eleqtrri |
|- 1 e. N |
34 |
3 4 2
|
matepmcl |
|- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> A. n e. N ( ( Q ` n ) M n ) e. ( Base ` R ) ) |
35 |
20 34
|
syl3an2 |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> A. n e. N ( ( Q ` n ) M n ) e. ( Base ` R ) ) |
36 |
|
fveq2 |
|- ( n = 1 -> ( Q ` n ) = ( Q ` 1 ) ) |
37 |
|
id |
|- ( n = 1 -> n = 1 ) |
38 |
36 37
|
oveq12d |
|- ( n = 1 -> ( ( Q ` n ) M n ) = ( ( Q ` 1 ) M 1 ) ) |
39 |
38
|
eleq1d |
|- ( n = 1 -> ( ( ( Q ` n ) M n ) e. ( Base ` R ) <-> ( ( Q ` 1 ) M 1 ) e. ( Base ` R ) ) ) |
40 |
39
|
rspcva |
|- ( ( 1 e. N /\ A. n e. N ( ( Q ` n ) M n ) e. ( Base ` R ) ) -> ( ( Q ` 1 ) M 1 ) e. ( Base ` R ) ) |
41 |
33 35 40
|
sylancr |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( ( Q ` 1 ) M 1 ) e. ( Base ` R ) ) |
42 |
|
eqid |
|- ( n e. N |-> ( ( Q ` n ) M n ) ) = ( n e. N |-> ( ( Q ` n ) M n ) ) |
43 |
38 42
|
fvmptg |
|- ( ( 1 e. N /\ ( ( Q ` 1 ) M 1 ) e. ( Base ` R ) ) -> ( ( n e. N |-> ( ( Q ` n ) M n ) ) ` 1 ) = ( ( Q ` 1 ) M 1 ) ) |
44 |
33 41 43
|
sylancr |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( ( n e. N |-> ( ( Q ` n ) M n ) ) ` 1 ) = ( ( Q ` 1 ) M 1 ) ) |
45 |
|
fveq1 |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( Q ` 1 ) = ( { <. 1 , 1 >. , <. 2 , 2 >. } ` 1 ) ) |
46 |
|
1ne2 |
|- 1 =/= 2 |
47 |
11 11
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , 1 >. , <. 2 , 2 >. } ` 1 ) = 1 ) |
48 |
46 47
|
ax-mp |
|- ( { <. 1 , 1 >. , <. 2 , 2 >. } ` 1 ) = 1 |
49 |
45 48
|
eqtrdi |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( Q ` 1 ) = 1 ) |
50 |
49
|
3ad2ant2 |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( Q ` 1 ) = 1 ) |
51 |
50
|
oveq1d |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( ( Q ` 1 ) M 1 ) = ( 1 M 1 ) ) |
52 |
44 51
|
eqtrd |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( ( n e. N |-> ( ( Q ` n ) M n ) ) ` 1 ) = ( 1 M 1 ) ) |
53 |
|
2ex |
|- 2 e. _V |
54 |
53
|
prid2 |
|- 2 e. { 1 , 2 } |
55 |
54 1
|
eleqtrri |
|- 2 e. N |
56 |
|
fveq2 |
|- ( n = 2 -> ( Q ` n ) = ( Q ` 2 ) ) |
57 |
|
id |
|- ( n = 2 -> n = 2 ) |
58 |
56 57
|
oveq12d |
|- ( n = 2 -> ( ( Q ` n ) M n ) = ( ( Q ` 2 ) M 2 ) ) |
59 |
58
|
eleq1d |
|- ( n = 2 -> ( ( ( Q ` n ) M n ) e. ( Base ` R ) <-> ( ( Q ` 2 ) M 2 ) e. ( Base ` R ) ) ) |
60 |
59
|
rspcva |
|- ( ( 2 e. N /\ A. n e. N ( ( Q ` n ) M n ) e. ( Base ` R ) ) -> ( ( Q ` 2 ) M 2 ) e. ( Base ` R ) ) |
61 |
55 35 60
|
sylancr |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( ( Q ` 2 ) M 2 ) e. ( Base ` R ) ) |
62 |
58 42
|
fvmptg |
|- ( ( 2 e. N /\ ( ( Q ` 2 ) M 2 ) e. ( Base ` R ) ) -> ( ( n e. N |-> ( ( Q ` n ) M n ) ) ` 2 ) = ( ( Q ` 2 ) M 2 ) ) |
63 |
55 61 62
|
sylancr |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( ( n e. N |-> ( ( Q ` n ) M n ) ) ` 2 ) = ( ( Q ` 2 ) M 2 ) ) |
64 |
|
fveq1 |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( Q ` 2 ) = ( { <. 1 , 1 >. , <. 2 , 2 >. } ` 2 ) ) |
65 |
53 53
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , 1 >. , <. 2 , 2 >. } ` 2 ) = 2 ) |
66 |
46 65
|
ax-mp |
|- ( { <. 1 , 1 >. , <. 2 , 2 >. } ` 2 ) = 2 |
67 |
64 66
|
eqtrdi |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( Q ` 2 ) = 2 ) |
68 |
67
|
3ad2ant2 |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( Q ` 2 ) = 2 ) |
69 |
68
|
oveq1d |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( ( Q ` 2 ) M 2 ) = ( 2 M 2 ) ) |
70 |
63 69
|
eqtrd |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( ( n e. N |-> ( ( Q ` n ) M n ) ) ` 2 ) = ( 2 M 2 ) ) |
71 |
52 70
|
oveq12d |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( ( ( n e. N |-> ( ( Q ` n ) M n ) ) ` 1 ) .x. ( ( n e. N |-> ( ( Q ` n ) M n ) ) ` 2 ) ) = ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ) |
72 |
31 71
|
eqtrd |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( G gsum ( n e. N |-> ( ( Q ` n ) M n ) ) ) = ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ) |