| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2detleib.n |
|- N = { 1 , 2 } |
| 2 |
|
m2detleib.d |
|- D = ( N maDet R ) |
| 3 |
|
m2detleib.a |
|- A = ( N Mat R ) |
| 4 |
|
m2detleib.b |
|- B = ( Base ` A ) |
| 5 |
|
m2detleib.m |
|- .- = ( -g ` R ) |
| 6 |
|
m2detleib.t |
|- .x. = ( .r ` R ) |
| 7 |
|
eqid |
|- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
| 8 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 9 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
| 10 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 11 |
2 3 4 7 8 9 6 10
|
mdetleib1 |
|- ( M e. B -> ( D ` M ) = ( R gsum ( k e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) ) |
| 12 |
11
|
adantl |
|- ( ( R e. Ring /\ M e. B ) -> ( D ` M ) = ( R gsum ( k e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) ) |
| 13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 14 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 15 |
|
ringcmn |
|- ( R e. Ring -> R e. CMnd ) |
| 16 |
15
|
adantr |
|- ( ( R e. Ring /\ M e. B ) -> R e. CMnd ) |
| 17 |
|
prfi |
|- { 1 , 2 } e. Fin |
| 18 |
1 17
|
eqeltri |
|- N e. Fin |
| 19 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
| 20 |
19 7
|
symgbasfi |
|- ( N e. Fin -> ( Base ` ( SymGrp ` N ) ) e. Fin ) |
| 21 |
18 20
|
ax-mp |
|- ( Base ` ( SymGrp ` N ) ) e. Fin |
| 22 |
21
|
a1i |
|- ( ( R e. Ring /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) e. Fin ) |
| 23 |
|
simpl |
|- ( ( R e. Ring /\ M e. B ) -> R e. Ring ) |
| 24 |
23
|
adantr |
|- ( ( ( R e. Ring /\ M e. B ) /\ k e. ( Base ` ( SymGrp ` N ) ) ) -> R e. Ring ) |
| 25 |
7 9 8
|
zrhpsgnelbas |
|- ( ( R e. Ring /\ N e. Fin /\ k e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) e. ( Base ` R ) ) |
| 26 |
18 25
|
mp3an2 |
|- ( ( R e. Ring /\ k e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) e. ( Base ` R ) ) |
| 27 |
26
|
adantlr |
|- ( ( ( R e. Ring /\ M e. B ) /\ k e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) e. ( Base ` R ) ) |
| 28 |
|
simpr |
|- ( ( ( R e. Ring /\ M e. B ) /\ k e. ( Base ` ( SymGrp ` N ) ) ) -> k e. ( Base ` ( SymGrp ` N ) ) ) |
| 29 |
|
simpr |
|- ( ( R e. Ring /\ M e. B ) -> M e. B ) |
| 30 |
29
|
adantr |
|- ( ( ( R e. Ring /\ M e. B ) /\ k e. ( Base ` ( SymGrp ` N ) ) ) -> M e. B ) |
| 31 |
1 7 3 4 10
|
m2detleiblem2 |
|- ( ( R e. Ring /\ k e. ( Base ` ( SymGrp ` N ) ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) e. ( Base ` R ) ) |
| 32 |
24 28 30 31
|
syl3anc |
|- ( ( ( R e. Ring /\ M e. B ) /\ k e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) e. ( Base ` R ) ) |
| 33 |
13 6
|
ringcl |
|- ( ( R e. Ring /\ ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) e. ( Base ` R ) /\ ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) e. ( Base ` R ) ) -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) e. ( Base ` R ) ) |
| 34 |
24 27 32 33
|
syl3anc |
|- ( ( ( R e. Ring /\ M e. B ) /\ k e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) e. ( Base ` R ) ) |
| 35 |
|
opex |
|- <. 1 , 1 >. e. _V |
| 36 |
|
opex |
|- <. 2 , 2 >. e. _V |
| 37 |
35 36
|
pm3.2i |
|- ( <. 1 , 1 >. e. _V /\ <. 2 , 2 >. e. _V ) |
| 38 |
|
opex |
|- <. 1 , 2 >. e. _V |
| 39 |
|
opex |
|- <. 2 , 1 >. e. _V |
| 40 |
38 39
|
pm3.2i |
|- ( <. 1 , 2 >. e. _V /\ <. 2 , 1 >. e. _V ) |
| 41 |
37 40
|
pm3.2i |
|- ( ( <. 1 , 1 >. e. _V /\ <. 2 , 2 >. e. _V ) /\ ( <. 1 , 2 >. e. _V /\ <. 2 , 1 >. e. _V ) ) |
| 42 |
|
1ne2 |
|- 1 =/= 2 |
| 43 |
42
|
olci |
|- ( 1 =/= 1 \/ 1 =/= 2 ) |
| 44 |
|
1ex |
|- 1 e. _V |
| 45 |
44 44
|
opthne |
|- ( <. 1 , 1 >. =/= <. 1 , 2 >. <-> ( 1 =/= 1 \/ 1 =/= 2 ) ) |
| 46 |
43 45
|
mpbir |
|- <. 1 , 1 >. =/= <. 1 , 2 >. |
| 47 |
42
|
orci |
|- ( 1 =/= 2 \/ 1 =/= 1 ) |
| 48 |
44 44
|
opthne |
|- ( <. 1 , 1 >. =/= <. 2 , 1 >. <-> ( 1 =/= 2 \/ 1 =/= 1 ) ) |
| 49 |
47 48
|
mpbir |
|- <. 1 , 1 >. =/= <. 2 , 1 >. |
| 50 |
46 49
|
pm3.2i |
|- ( <. 1 , 1 >. =/= <. 1 , 2 >. /\ <. 1 , 1 >. =/= <. 2 , 1 >. ) |
| 51 |
50
|
orci |
|- ( ( <. 1 , 1 >. =/= <. 1 , 2 >. /\ <. 1 , 1 >. =/= <. 2 , 1 >. ) \/ ( <. 2 , 2 >. =/= <. 1 , 2 >. /\ <. 2 , 2 >. =/= <. 2 , 1 >. ) ) |
| 52 |
41 51
|
pm3.2i |
|- ( ( ( <. 1 , 1 >. e. _V /\ <. 2 , 2 >. e. _V ) /\ ( <. 1 , 2 >. e. _V /\ <. 2 , 1 >. e. _V ) ) /\ ( ( <. 1 , 1 >. =/= <. 1 , 2 >. /\ <. 1 , 1 >. =/= <. 2 , 1 >. ) \/ ( <. 2 , 2 >. =/= <. 1 , 2 >. /\ <. 2 , 2 >. =/= <. 2 , 1 >. ) ) ) |
| 53 |
52
|
a1i |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ( <. 1 , 1 >. e. _V /\ <. 2 , 2 >. e. _V ) /\ ( <. 1 , 2 >. e. _V /\ <. 2 , 1 >. e. _V ) ) /\ ( ( <. 1 , 1 >. =/= <. 1 , 2 >. /\ <. 1 , 1 >. =/= <. 2 , 1 >. ) \/ ( <. 2 , 2 >. =/= <. 1 , 2 >. /\ <. 2 , 2 >. =/= <. 2 , 1 >. ) ) ) ) |
| 54 |
|
prneimg |
|- ( ( ( <. 1 , 1 >. e. _V /\ <. 2 , 2 >. e. _V ) /\ ( <. 1 , 2 >. e. _V /\ <. 2 , 1 >. e. _V ) ) -> ( ( ( <. 1 , 1 >. =/= <. 1 , 2 >. /\ <. 1 , 1 >. =/= <. 2 , 1 >. ) \/ ( <. 2 , 2 >. =/= <. 1 , 2 >. /\ <. 2 , 2 >. =/= <. 2 , 1 >. ) ) -> { <. 1 , 1 >. , <. 2 , 2 >. } =/= { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
| 55 |
54
|
imp |
|- ( ( ( ( <. 1 , 1 >. e. _V /\ <. 2 , 2 >. e. _V ) /\ ( <. 1 , 2 >. e. _V /\ <. 2 , 1 >. e. _V ) ) /\ ( ( <. 1 , 1 >. =/= <. 1 , 2 >. /\ <. 1 , 1 >. =/= <. 2 , 1 >. ) \/ ( <. 2 , 2 >. =/= <. 1 , 2 >. /\ <. 2 , 2 >. =/= <. 2 , 1 >. ) ) ) -> { <. 1 , 1 >. , <. 2 , 2 >. } =/= { <. 1 , 2 >. , <. 2 , 1 >. } ) |
| 56 |
|
disjsn2 |
|- ( { <. 1 , 1 >. , <. 2 , 2 >. } =/= { <. 1 , 2 >. , <. 2 , 1 >. } -> ( { { <. 1 , 1 >. , <. 2 , 2 >. } } i^i { { <. 1 , 2 >. , <. 2 , 1 >. } } ) = (/) ) |
| 57 |
53 55 56
|
3syl |
|- ( ( R e. Ring /\ M e. B ) -> ( { { <. 1 , 1 >. , <. 2 , 2 >. } } i^i { { <. 1 , 2 >. , <. 2 , 1 >. } } ) = (/) ) |
| 58 |
|
2nn |
|- 2 e. NN |
| 59 |
19 7 1
|
symg2bas |
|- ( ( 1 e. _V /\ 2 e. NN ) -> ( Base ` ( SymGrp ` N ) ) = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
| 60 |
44 58 59
|
mp2an |
|- ( Base ` ( SymGrp ` N ) ) = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } |
| 61 |
|
df-pr |
|- { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } = ( { { <. 1 , 1 >. , <. 2 , 2 >. } } u. { { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
| 62 |
60 61
|
eqtri |
|- ( Base ` ( SymGrp ` N ) ) = ( { { <. 1 , 1 >. , <. 2 , 2 >. } } u. { { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
| 63 |
62
|
a1i |
|- ( ( R e. Ring /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) = ( { { <. 1 , 1 >. , <. 2 , 2 >. } } u. { { <. 1 , 2 >. , <. 2 , 1 >. } } ) ) |
| 64 |
13 14 16 22 34 57 63
|
gsummptfidmsplit |
|- ( ( R e. Ring /\ M e. B ) -> ( R gsum ( k e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) = ( ( R gsum ( k e. { { <. 1 , 1 >. , <. 2 , 2 >. } } |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) ( +g ` R ) ( R gsum ( k e. { { <. 1 , 2 >. , <. 2 , 1 >. } } |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) ) ) |
| 65 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
| 66 |
65
|
adantr |
|- ( ( R e. Ring /\ M e. B ) -> R e. Mnd ) |
| 67 |
|
prex |
|- { <. 1 , 1 >. , <. 2 , 2 >. } e. _V |
| 68 |
67
|
a1i |
|- ( ( R e. Ring /\ M e. B ) -> { <. 1 , 1 >. , <. 2 , 2 >. } e. _V ) |
| 69 |
67
|
prid1 |
|- { <. 1 , 1 >. , <. 2 , 2 >. } e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } |
| 70 |
69 60
|
eleqtrri |
|- { <. 1 , 1 >. , <. 2 , 2 >. } e. ( Base ` ( SymGrp ` N ) ) |
| 71 |
70
|
a1i |
|- ( M e. B -> { <. 1 , 1 >. , <. 2 , 2 >. } e. ( Base ` ( SymGrp ` N ) ) ) |
| 72 |
7 9 8
|
zrhpsgnelbas |
|- ( ( R e. Ring /\ N e. Fin /\ { <. 1 , 1 >. , <. 2 , 2 >. } e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) e. ( Base ` R ) ) |
| 73 |
18 72
|
mp3an2 |
|- ( ( R e. Ring /\ { <. 1 , 1 >. , <. 2 , 2 >. } e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) e. ( Base ` R ) ) |
| 74 |
71 73
|
sylan2 |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) e. ( Base ` R ) ) |
| 75 |
1 7 3 4 10
|
m2detleiblem2 |
|- ( ( R e. Ring /\ { <. 1 , 1 >. , <. 2 , 2 >. } e. ( Base ` ( SymGrp ` N ) ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) e. ( Base ` R ) ) |
| 76 |
70 75
|
mp3an2 |
|- ( ( R e. Ring /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) e. ( Base ` R ) ) |
| 77 |
13 6
|
ringcl |
|- ( ( R e. Ring /\ ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) e. ( Base ` R ) /\ ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) e. ( Base ` R ) ) -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) e. ( Base ` R ) ) |
| 78 |
23 74 76 77
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) e. ( Base ` R ) ) |
| 79 |
|
2fveq3 |
|- ( k = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) = ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) ) |
| 80 |
|
fveq1 |
|- ( k = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( k ` n ) = ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) ) |
| 81 |
80
|
oveq1d |
|- ( k = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( ( k ` n ) M n ) = ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) |
| 82 |
81
|
mpteq2dv |
|- ( k = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( n e. N |-> ( ( k ` n ) M n ) ) = ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) |
| 83 |
82
|
oveq2d |
|- ( k = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) = ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) |
| 84 |
79 83
|
oveq12d |
|- ( k = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) = ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) ) |
| 85 |
13 84
|
gsumsn |
|- ( ( R e. Mnd /\ { <. 1 , 1 >. , <. 2 , 2 >. } e. _V /\ ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) e. ( Base ` R ) ) -> ( R gsum ( k e. { { <. 1 , 1 >. , <. 2 , 2 >. } } |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) = ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) ) |
| 86 |
66 68 78 85
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( R gsum ( k e. { { <. 1 , 1 >. , <. 2 , 2 >. } } |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) = ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) ) |
| 87 |
|
prex |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. _V |
| 88 |
87
|
a1i |
|- ( ( R e. Ring /\ M e. B ) -> { <. 1 , 2 >. , <. 2 , 1 >. } e. _V ) |
| 89 |
87
|
prid2 |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } |
| 90 |
89 60
|
eleqtrri |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. ( Base ` ( SymGrp ` N ) ) |
| 91 |
90
|
a1i |
|- ( M e. B -> { <. 1 , 2 >. , <. 2 , 1 >. } e. ( Base ` ( SymGrp ` N ) ) ) |
| 92 |
7 9 8
|
zrhpsgnelbas |
|- ( ( R e. Ring /\ N e. Fin /\ { <. 1 , 2 >. , <. 2 , 1 >. } e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) e. ( Base ` R ) ) |
| 93 |
18 92
|
mp3an2 |
|- ( ( R e. Ring /\ { <. 1 , 2 >. , <. 2 , 1 >. } e. ( Base ` ( SymGrp ` N ) ) ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) e. ( Base ` R ) ) |
| 94 |
91 93
|
sylan2 |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) e. ( Base ` R ) ) |
| 95 |
1 7 3 4 10
|
m2detleiblem2 |
|- ( ( R e. Ring /\ { <. 1 , 2 >. , <. 2 , 1 >. } e. ( Base ` ( SymGrp ` N ) ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) e. ( Base ` R ) ) |
| 96 |
90 95
|
mp3an2 |
|- ( ( R e. Ring /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) e. ( Base ` R ) ) |
| 97 |
13 6
|
ringcl |
|- ( ( R e. Ring /\ ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) e. ( Base ` R ) /\ ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) e. ( Base ` R ) ) -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) ) e. ( Base ` R ) ) |
| 98 |
23 94 96 97
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) ) e. ( Base ` R ) ) |
| 99 |
|
2fveq3 |
|- ( k = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) = ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) ) |
| 100 |
|
fveq1 |
|- ( k = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( k ` n ) = ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) ) |
| 101 |
100
|
oveq1d |
|- ( k = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( ( k ` n ) M n ) = ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) |
| 102 |
101
|
mpteq2dv |
|- ( k = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( n e. N |-> ( ( k ` n ) M n ) ) = ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) |
| 103 |
102
|
oveq2d |
|- ( k = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) = ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) ) |
| 104 |
99 103
|
oveq12d |
|- ( k = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) = ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) ) ) |
| 105 |
13 104
|
gsumsn |
|- ( ( R e. Mnd /\ { <. 1 , 2 >. , <. 2 , 1 >. } e. _V /\ ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) ) e. ( Base ` R ) ) -> ( R gsum ( k e. { { <. 1 , 2 >. , <. 2 , 1 >. } } |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) = ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) ) ) |
| 106 |
66 88 98 105
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( R gsum ( k e. { { <. 1 , 2 >. , <. 2 , 1 >. } } |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) = ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) ) ) |
| 107 |
86 106
|
oveq12d |
|- ( ( R e. Ring /\ M e. B ) -> ( ( R gsum ( k e. { { <. 1 , 1 >. , <. 2 , 2 >. } } |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) ( +g ` R ) ( R gsum ( k e. { { <. 1 , 2 >. , <. 2 , 1 >. } } |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) ) = ( ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) ( +g ` R ) ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) ) ) ) |
| 108 |
|
eqidd |
|- ( M e. B -> { <. 1 , 1 >. , <. 2 , 2 >. } = { <. 1 , 1 >. , <. 2 , 2 >. } ) |
| 109 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 110 |
1 7 8 9 109
|
m2detleiblem5 |
|- ( ( R e. Ring /\ { <. 1 , 1 >. , <. 2 , 2 >. } = { <. 1 , 1 >. , <. 2 , 2 >. } ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) = ( 1r ` R ) ) |
| 111 |
108 110
|
sylan2 |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) = ( 1r ` R ) ) |
| 112 |
|
eqidd |
|- ( ( R e. Ring /\ M e. B ) -> { <. 1 , 1 >. , <. 2 , 2 >. } = { <. 1 , 1 >. , <. 2 , 2 >. } ) |
| 113 |
10 6
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
| 114 |
1 7 3 4 10 113
|
m2detleiblem3 |
|- ( ( R e. Ring /\ { <. 1 , 1 >. , <. 2 , 2 >. } = { <. 1 , 1 >. , <. 2 , 2 >. } /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) = ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ) |
| 115 |
23 112 29 114
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) = ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ) |
| 116 |
111 115
|
oveq12d |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) = ( ( 1r ` R ) .x. ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ) ) |
| 117 |
44
|
prid1 |
|- 1 e. { 1 , 2 } |
| 118 |
117 1
|
eleqtrri |
|- 1 e. N |
| 119 |
118
|
a1i |
|- ( ( R e. Ring /\ M e. B ) -> 1 e. N ) |
| 120 |
4
|
eleq2i |
|- ( M e. B <-> M e. ( Base ` A ) ) |
| 121 |
120
|
biimpi |
|- ( M e. B -> M e. ( Base ` A ) ) |
| 122 |
121
|
adantl |
|- ( ( R e. Ring /\ M e. B ) -> M e. ( Base ` A ) ) |
| 123 |
3 13
|
matecl |
|- ( ( 1 e. N /\ 1 e. N /\ M e. ( Base ` A ) ) -> ( 1 M 1 ) e. ( Base ` R ) ) |
| 124 |
119 119 122 123
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( 1 M 1 ) e. ( Base ` R ) ) |
| 125 |
|
prid2g |
|- ( 2 e. NN -> 2 e. { 1 , 2 } ) |
| 126 |
58 125
|
ax-mp |
|- 2 e. { 1 , 2 } |
| 127 |
126 1
|
eleqtrri |
|- 2 e. N |
| 128 |
127
|
a1i |
|- ( ( R e. Ring /\ M e. B ) -> 2 e. N ) |
| 129 |
3 13
|
matecl |
|- ( ( 2 e. N /\ 2 e. N /\ M e. ( Base ` A ) ) -> ( 2 M 2 ) e. ( Base ` R ) ) |
| 130 |
128 128 122 129
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( 2 M 2 ) e. ( Base ` R ) ) |
| 131 |
13 6
|
ringcl |
|- ( ( R e. Ring /\ ( 1 M 1 ) e. ( Base ` R ) /\ ( 2 M 2 ) e. ( Base ` R ) ) -> ( ( 1 M 1 ) .x. ( 2 M 2 ) ) e. ( Base ` R ) ) |
| 132 |
23 124 130 131
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( ( 1 M 1 ) .x. ( 2 M 2 ) ) e. ( Base ` R ) ) |
| 133 |
13 6 109
|
ringlidm |
|- ( ( R e. Ring /\ ( ( 1 M 1 ) .x. ( 2 M 2 ) ) e. ( Base ` R ) ) -> ( ( 1r ` R ) .x. ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ) = ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ) |
| 134 |
132 133
|
syldan |
|- ( ( R e. Ring /\ M e. B ) -> ( ( 1r ` R ) .x. ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ) = ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ) |
| 135 |
116 134
|
eqtrd |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) = ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ) |
| 136 |
|
eqidd |
|- ( M e. B -> { <. 1 , 2 >. , <. 2 , 1 >. } = { <. 1 , 2 >. , <. 2 , 1 >. } ) |
| 137 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 138 |
1 7 8 9 109 137
|
m2detleiblem6 |
|- ( ( R e. Ring /\ { <. 1 , 2 >. , <. 2 , 1 >. } = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) |
| 139 |
136 138
|
sylan2 |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) = ( ( invg ` R ) ` ( 1r ` R ) ) ) |
| 140 |
|
eqidd |
|- ( ( R e. Ring /\ M e. B ) -> { <. 1 , 2 >. , <. 2 , 1 >. } = { <. 1 , 2 >. , <. 2 , 1 >. } ) |
| 141 |
1 7 3 4 10 113
|
m2detleiblem4 |
|- ( ( R e. Ring /\ { <. 1 , 2 >. , <. 2 , 1 >. } = { <. 1 , 2 >. , <. 2 , 1 >. } /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) = ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) |
| 142 |
23 140 29 141
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) = ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) |
| 143 |
139 142
|
oveq12d |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) ) = ( ( ( invg ` R ) ` ( 1r ` R ) ) .x. ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) |
| 144 |
135 143
|
oveq12d |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 1 >. , <. 2 , 2 >. } ` n ) M n ) ) ) ) ( +g ` R ) ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( { <. 1 , 2 >. , <. 2 , 1 >. } ` n ) M n ) ) ) ) ) = ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ( +g ` R ) ( ( ( invg ` R ) ` ( 1r ` R ) ) .x. ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) ) |
| 145 |
3 13
|
matecl |
|- ( ( 2 e. N /\ 1 e. N /\ M e. ( Base ` A ) ) -> ( 2 M 1 ) e. ( Base ` R ) ) |
| 146 |
128 119 122 145
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( 2 M 1 ) e. ( Base ` R ) ) |
| 147 |
3 13
|
matecl |
|- ( ( 1 e. N /\ 2 e. N /\ M e. ( Base ` A ) ) -> ( 1 M 2 ) e. ( Base ` R ) ) |
| 148 |
119 128 122 147
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( 1 M 2 ) e. ( Base ` R ) ) |
| 149 |
13 6
|
ringcl |
|- ( ( R e. Ring /\ ( 2 M 1 ) e. ( Base ` R ) /\ ( 1 M 2 ) e. ( Base ` R ) ) -> ( ( 2 M 1 ) .x. ( 1 M 2 ) ) e. ( Base ` R ) ) |
| 150 |
23 146 148 149
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( ( 2 M 1 ) .x. ( 1 M 2 ) ) e. ( Base ` R ) ) |
| 151 |
1 7 8 9 109 137 6 5
|
m2detleiblem7 |
|- ( ( R e. Ring /\ ( ( 1 M 1 ) .x. ( 2 M 2 ) ) e. ( Base ` R ) /\ ( ( 2 M 1 ) .x. ( 1 M 2 ) ) e. ( Base ` R ) ) -> ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ( +g ` R ) ( ( ( invg ` R ) ` ( 1r ` R ) ) .x. ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) = ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) .- ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) |
| 152 |
23 132 150 151
|
syl3anc |
|- ( ( R e. Ring /\ M e. B ) -> ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) ( +g ` R ) ( ( ( invg ` R ) ` ( 1r ` R ) ) .x. ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) = ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) .- ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) |
| 153 |
107 144 152
|
3eqtrd |
|- ( ( R e. Ring /\ M e. B ) -> ( ( R gsum ( k e. { { <. 1 , 1 >. , <. 2 , 2 >. } } |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) ( +g ` R ) ( R gsum ( k e. { { <. 1 , 2 >. , <. 2 , 1 >. } } |-> ( ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` k ) ) .x. ( ( mulGrp ` R ) gsum ( n e. N |-> ( ( k ` n ) M n ) ) ) ) ) ) ) = ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) .- ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) |
| 154 |
12 64 153
|
3eqtrd |
|- ( ( R e. Ring /\ M e. B ) -> ( D ` M ) = ( ( ( 1 M 1 ) .x. ( 2 M 2 ) ) .- ( ( 2 M 1 ) .x. ( 1 M 2 ) ) ) ) |