Step |
Hyp |
Ref |
Expression |
1 |
|
m2detleiblem1.n |
|- N = { 1 , 2 } |
2 |
|
m2detleiblem1.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
3 |
|
m2detleiblem1.y |
|- Y = ( ZRHom ` R ) |
4 |
|
m2detleiblem1.s |
|- S = ( pmSgn ` N ) |
5 |
|
m2detleiblem1.o |
|- .1. = ( 1r ` R ) |
6 |
|
1ex |
|- 1 e. _V |
7 |
|
2nn |
|- 2 e. NN |
8 |
|
prex |
|- { <. 1 , 1 >. , <. 2 , 2 >. } e. _V |
9 |
8
|
prid1 |
|- { <. 1 , 1 >. , <. 2 , 2 >. } e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } |
10 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
11 |
10 2 1
|
symg2bas |
|- ( ( 1 e. _V /\ 2 e. NN ) -> P = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
12 |
9 11
|
eleqtrrid |
|- ( ( 1 e. _V /\ 2 e. NN ) -> { <. 1 , 1 >. , <. 2 , 2 >. } e. P ) |
13 |
6 7 12
|
mp2an |
|- { <. 1 , 1 >. , <. 2 , 2 >. } e. P |
14 |
|
eleq1 |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( Q e. P <-> { <. 1 , 1 >. , <. 2 , 2 >. } e. P ) ) |
15 |
13 14
|
mpbiri |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> Q e. P ) |
16 |
1 2 3 4 5
|
m2detleiblem1 |
|- ( ( R e. Ring /\ Q e. P ) -> ( Y ` ( S ` Q ) ) = ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) ) |
17 |
15 16
|
sylan2 |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } ) -> ( Y ` ( S ` Q ) ) = ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) ) |
18 |
|
fveq2 |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( ( pmSgn ` N ) ` Q ) = ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) |
19 |
18
|
adantl |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } ) -> ( ( pmSgn ` N ) ` Q ) = ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) |
20 |
|
eqid |
|- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
21 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
22 |
1 10 2 20 21
|
psgnprfval1 |
|- ( ( pmSgn ` N ) ` { <. 1 , 1 >. , <. 2 , 2 >. } ) = 1 |
23 |
19 22
|
eqtrdi |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } ) -> ( ( pmSgn ` N ) ` Q ) = 1 ) |
24 |
23
|
oveq1d |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } ) -> ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) = ( 1 ( .g ` R ) .1. ) ) |
25 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
26 |
25 5
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
27 |
26
|
adantr |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } ) -> .1. e. ( Base ` R ) ) |
28 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
29 |
25 28
|
mulg1 |
|- ( .1. e. ( Base ` R ) -> ( 1 ( .g ` R ) .1. ) = .1. ) |
30 |
27 29
|
syl |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } ) -> ( 1 ( .g ` R ) .1. ) = .1. ) |
31 |
17 24 30
|
3eqtrd |
|- ( ( R e. Ring /\ Q = { <. 1 , 1 >. , <. 2 , 2 >. } ) -> ( Y ` ( S ` Q ) ) = .1. ) |