Description: Lemma 5 for m2detleib . (Contributed by AV, 20-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | m2detleiblem1.n | |
|
m2detleiblem1.p | |
||
m2detleiblem1.y | |
||
m2detleiblem1.s | |
||
m2detleiblem1.o | |
||
Assertion | m2detleiblem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m2detleiblem1.n | |
|
2 | m2detleiblem1.p | |
|
3 | m2detleiblem1.y | |
|
4 | m2detleiblem1.s | |
|
5 | m2detleiblem1.o | |
|
6 | 1ex | |
|
7 | 2nn | |
|
8 | prex | |
|
9 | 8 | prid1 | |
10 | eqid | |
|
11 | 10 2 1 | symg2bas | |
12 | 9 11 | eleqtrrid | |
13 | 6 7 12 | mp2an | |
14 | eleq1 | |
|
15 | 13 14 | mpbiri | |
16 | 1 2 3 4 5 | m2detleiblem1 | |
17 | 15 16 | sylan2 | |
18 | fveq2 | |
|
19 | 18 | adantl | |
20 | eqid | |
|
21 | eqid | |
|
22 | 1 10 2 20 21 | psgnprfval1 | |
23 | 19 22 | eqtrdi | |
24 | 23 | oveq1d | |
25 | eqid | |
|
26 | 25 5 | ringidcl | |
27 | 26 | adantr | |
28 | eqid | |
|
29 | 25 28 | mulg1 | |
30 | 27 29 | syl | |
31 | 17 24 30 | 3eqtrd | |