Metamath Proof Explorer


Theorem m2detleiblem6

Description: Lemma 6 for m2detleib . (Contributed by AV, 20-Dec-2018)

Ref Expression
Hypotheses m2detleiblem1.n N=12
m2detleiblem1.p P=BaseSymGrpN
m2detleiblem1.y Y=ℤRHomR
m2detleiblem1.s S=pmSgnN
m2detleiblem1.o 1˙=1R
m2detleiblem1.i I=invgR
Assertion m2detleiblem6 RRingQ=1221YSQ=I1˙

Proof

Step Hyp Ref Expression
1 m2detleiblem1.n N=12
2 m2detleiblem1.p P=BaseSymGrpN
3 m2detleiblem1.y Y=ℤRHomR
4 m2detleiblem1.s S=pmSgnN
5 m2detleiblem1.o 1˙=1R
6 m2detleiblem1.i I=invgR
7 1ex 1V
8 2nn 2
9 prex 1221V
10 9 prid2 122111221221
11 eqid SymGrpN=SymGrpN
12 11 2 1 symg2bas 1V2P=11221221
13 10 12 eleqtrrid 1V21221P
14 7 8 13 mp2an 1221P
15 eleq1 Q=1221QP1221P
16 14 15 mpbiri Q=1221QP
17 1 2 3 4 5 m2detleiblem1 RRingQPYSQ=pmSgnNQR1˙
18 16 17 sylan2 RRingQ=1221YSQ=pmSgnNQR1˙
19 fveq2 Q=1221pmSgnNQ=pmSgnN1221
20 19 adantl RRingQ=1221pmSgnNQ=pmSgnN1221
21 eqid ranpmTrspN=ranpmTrspN
22 eqid pmSgnN=pmSgnN
23 1 11 2 21 22 psgnprfval2 pmSgnN1221=1
24 20 23 eqtrdi RRingQ=1221pmSgnNQ=1
25 24 oveq1d RRingQ=1221pmSgnNQR1˙=-1R1˙
26 ringgrp RRingRGrp
27 eqid BaseR=BaseR
28 27 5 ringidcl RRing1˙BaseR
29 eqid R=R
30 27 29 6 mulgm1 RGrp1˙BaseR-1R1˙=I1˙
31 26 28 30 syl2anc RRing-1R1˙=I1˙
32 31 adantr RRingQ=1221-1R1˙=I1˙
33 18 25 32 3eqtrd RRingQ=1221YSQ=I1˙