Metamath Proof Explorer


Theorem m2detleiblem7

Description: Lemma 7 for m2detleib . (Contributed by AV, 20-Dec-2018)

Ref Expression
Hypotheses m2detleiblem1.n N=12
m2detleiblem1.p P=BaseSymGrpN
m2detleiblem1.y Y=ℤRHomR
m2detleiblem1.s S=pmSgnN
m2detleiblem1.o 1˙=1R
m2detleiblem1.i I=invgR
m2detleiblem1.t ·˙=R
m2detleiblem1.m -˙=-R
Assertion m2detleiblem7 RRingXBaseRZBaseRX+RI1˙·˙Z=X-˙Z

Proof

Step Hyp Ref Expression
1 m2detleiblem1.n N=12
2 m2detleiblem1.p P=BaseSymGrpN
3 m2detleiblem1.y Y=ℤRHomR
4 m2detleiblem1.s S=pmSgnN
5 m2detleiblem1.o 1˙=1R
6 m2detleiblem1.i I=invgR
7 m2detleiblem1.t ·˙=R
8 m2detleiblem1.m -˙=-R
9 eqid BaseR=BaseR
10 simpl RRingZBaseRRRing
11 simpr RRingZBaseRZBaseR
12 9 7 5 6 10 11 ringnegl RRingZBaseRI1˙·˙Z=IZ
13 12 3adant2 RRingXBaseRZBaseRI1˙·˙Z=IZ
14 13 oveq2d RRingXBaseRZBaseRX+RI1˙·˙Z=X+RIZ
15 eqid +R=+R
16 9 15 6 8 grpsubval XBaseRZBaseRX-˙Z=X+RIZ
17 16 3adant1 RRingXBaseRZBaseRX-˙Z=X+RIZ
18 14 17 eqtr4d RRingXBaseRZBaseRX+RI1˙·˙Z=X-˙Z