| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2detleiblem1.n |
⊢ 𝑁 = { 1 , 2 } |
| 2 |
|
m2detleiblem1.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 3 |
|
m2detleiblem1.y |
⊢ 𝑌 = ( ℤRHom ‘ 𝑅 ) |
| 4 |
|
m2detleiblem1.s |
⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) |
| 5 |
|
m2detleiblem1.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 6 |
|
m2detleiblem1.i |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
| 7 |
|
m2detleiblem1.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
|
m2detleiblem1.m |
⊢ − = ( -g ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 10 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 11 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ ( Base ‘ 𝑅 ) ) → 𝑍 ∈ ( Base ‘ 𝑅 ) ) |
| 12 |
9 7 5 6 10 11
|
ringnegl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼 ‘ 1 ) · 𝑍 ) = ( 𝐼 ‘ 𝑍 ) ) |
| 13 |
12
|
3adant2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑍 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐼 ‘ 1 ) · 𝑍 ) = ( 𝐼 ‘ 𝑍 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑍 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 ( +g ‘ 𝑅 ) ( ( 𝐼 ‘ 1 ) · 𝑍 ) ) = ( 𝑋 ( +g ‘ 𝑅 ) ( 𝐼 ‘ 𝑍 ) ) ) |
| 15 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 16 |
9 15 6 8
|
grpsubval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑍 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 − 𝑍 ) = ( 𝑋 ( +g ‘ 𝑅 ) ( 𝐼 ‘ 𝑍 ) ) ) |
| 17 |
16
|
3adant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑍 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 − 𝑍 ) = ( 𝑋 ( +g ‘ 𝑅 ) ( 𝐼 ‘ 𝑍 ) ) ) |
| 18 |
14 17
|
eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑅 ) ∧ 𝑍 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑋 ( +g ‘ 𝑅 ) ( ( 𝐼 ‘ 1 ) · 𝑍 ) ) = ( 𝑋 − 𝑍 ) ) |