| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2detleiblem2.n |
⊢ 𝑁 = { 1 , 2 } |
| 2 |
|
m2detleiblem2.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
| 3 |
|
m2detleiblem2.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 4 |
|
m2detleiblem2.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 5 |
|
m2detleiblem2.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 7 |
5 6
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐺 ) |
| 8 |
5
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Mnd ) |
| 9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
| 10 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
| 11 |
10
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) → 2 ∈ ( ℤ≥ ‘ 1 ) ) |
| 12 |
|
1z |
⊢ 1 ∈ ℤ |
| 13 |
|
fzpr |
⊢ ( 1 ∈ ℤ → ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } ) |
| 14 |
12 13
|
ax-mp |
⊢ ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } |
| 15 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 16 |
15
|
preq2i |
⊢ { 1 , ( 1 + 1 ) } = { 1 , 2 } |
| 17 |
14 16
|
eqtri |
⊢ ( 1 ... ( 1 + 1 ) ) = { 1 , 2 } |
| 18 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 19 |
18
|
oveq2i |
⊢ ( 1 ... 2 ) = ( 1 ... ( 1 + 1 ) ) |
| 20 |
17 19 1
|
3eqtr4ri |
⊢ 𝑁 = ( 1 ... 2 ) |
| 21 |
20
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) → 𝑁 = ( 1 ... 2 ) ) |
| 22 |
3 4 2
|
matepmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) → ∀ 𝑛 ∈ 𝑁 ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
| 23 |
7 9 11 21 22
|
gsummptfzcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑛 ∈ 𝑁 ↦ ( ( 𝑄 ‘ 𝑛 ) 𝑀 𝑛 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |