Metamath Proof Explorer


Theorem m2detleiblem2

Description: Lemma 2 for m2detleib . (Contributed by AV, 16-Dec-2018) (Proof shortened by AV, 1-Jan-2019)

Ref Expression
Hypotheses m2detleiblem2.n
|- N = { 1 , 2 }
m2detleiblem2.p
|- P = ( Base ` ( SymGrp ` N ) )
m2detleiblem2.a
|- A = ( N Mat R )
m2detleiblem2.b
|- B = ( Base ` A )
m2detleiblem2.g
|- G = ( mulGrp ` R )
Assertion m2detleiblem2
|- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> ( G gsum ( n e. N |-> ( ( Q ` n ) M n ) ) ) e. ( Base ` R ) )

Proof

Step Hyp Ref Expression
1 m2detleiblem2.n
 |-  N = { 1 , 2 }
2 m2detleiblem2.p
 |-  P = ( Base ` ( SymGrp ` N ) )
3 m2detleiblem2.a
 |-  A = ( N Mat R )
4 m2detleiblem2.b
 |-  B = ( Base ` A )
5 m2detleiblem2.g
 |-  G = ( mulGrp ` R )
6 eqid
 |-  ( Base ` R ) = ( Base ` R )
7 5 6 mgpbas
 |-  ( Base ` R ) = ( Base ` G )
8 5 ringmgp
 |-  ( R e. Ring -> G e. Mnd )
9 8 3ad2ant1
 |-  ( ( R e. Ring /\ Q e. P /\ M e. B ) -> G e. Mnd )
10 2eluzge1
 |-  2 e. ( ZZ>= ` 1 )
11 10 a1i
 |-  ( ( R e. Ring /\ Q e. P /\ M e. B ) -> 2 e. ( ZZ>= ` 1 ) )
12 1z
 |-  1 e. ZZ
13 fzpr
 |-  ( 1 e. ZZ -> ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } )
14 12 13 ax-mp
 |-  ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) }
15 1p1e2
 |-  ( 1 + 1 ) = 2
16 15 preq2i
 |-  { 1 , ( 1 + 1 ) } = { 1 , 2 }
17 14 16 eqtri
 |-  ( 1 ... ( 1 + 1 ) ) = { 1 , 2 }
18 df-2
 |-  2 = ( 1 + 1 )
19 18 oveq2i
 |-  ( 1 ... 2 ) = ( 1 ... ( 1 + 1 ) )
20 17 19 1 3eqtr4ri
 |-  N = ( 1 ... 2 )
21 20 a1i
 |-  ( ( R e. Ring /\ Q e. P /\ M e. B ) -> N = ( 1 ... 2 ) )
22 3 4 2 matepmcl
 |-  ( ( R e. Ring /\ Q e. P /\ M e. B ) -> A. n e. N ( ( Q ` n ) M n ) e. ( Base ` R ) )
23 7 9 11 21 22 gsummptfzcl
 |-  ( ( R e. Ring /\ Q e. P /\ M e. B ) -> ( G gsum ( n e. N |-> ( ( Q ` n ) M n ) ) ) e. ( Base ` R ) )