Step |
Hyp |
Ref |
Expression |
1 |
|
m2detleiblem2.n |
|- N = { 1 , 2 } |
2 |
|
m2detleiblem2.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
3 |
|
m2detleiblem2.a |
|- A = ( N Mat R ) |
4 |
|
m2detleiblem2.b |
|- B = ( Base ` A ) |
5 |
|
m2detleiblem2.g |
|- G = ( mulGrp ` R ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
5 6
|
mgpbas |
|- ( Base ` R ) = ( Base ` G ) |
8 |
5
|
ringmgp |
|- ( R e. Ring -> G e. Mnd ) |
9 |
8
|
3ad2ant1 |
|- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> G e. Mnd ) |
10 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
11 |
10
|
a1i |
|- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> 2 e. ( ZZ>= ` 1 ) ) |
12 |
|
1z |
|- 1 e. ZZ |
13 |
|
fzpr |
|- ( 1 e. ZZ -> ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } ) |
14 |
12 13
|
ax-mp |
|- ( 1 ... ( 1 + 1 ) ) = { 1 , ( 1 + 1 ) } |
15 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
16 |
15
|
preq2i |
|- { 1 , ( 1 + 1 ) } = { 1 , 2 } |
17 |
14 16
|
eqtri |
|- ( 1 ... ( 1 + 1 ) ) = { 1 , 2 } |
18 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
19 |
18
|
oveq2i |
|- ( 1 ... 2 ) = ( 1 ... ( 1 + 1 ) ) |
20 |
17 19 1
|
3eqtr4ri |
|- N = ( 1 ... 2 ) |
21 |
20
|
a1i |
|- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> N = ( 1 ... 2 ) ) |
22 |
3 4 2
|
matepmcl |
|- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> A. n e. N ( ( Q ` n ) M n ) e. ( Base ` R ) ) |
23 |
7 9 11 21 22
|
gsummptfzcl |
|- ( ( R e. Ring /\ Q e. P /\ M e. B ) -> ( G gsum ( n e. N |-> ( ( Q ` n ) M n ) ) ) e. ( Base ` R ) ) |