Metamath Proof Explorer


Theorem m2detleiblem2

Description: Lemma 2 for m2detleib . (Contributed by AV, 16-Dec-2018) (Proof shortened by AV, 1-Jan-2019)

Ref Expression
Hypotheses m2detleiblem2.n N=12
m2detleiblem2.p P=BaseSymGrpN
m2detleiblem2.a A=NMatR
m2detleiblem2.b B=BaseA
m2detleiblem2.g G=mulGrpR
Assertion m2detleiblem2 RRingQPMBGnNQnMnBaseR

Proof

Step Hyp Ref Expression
1 m2detleiblem2.n N=12
2 m2detleiblem2.p P=BaseSymGrpN
3 m2detleiblem2.a A=NMatR
4 m2detleiblem2.b B=BaseA
5 m2detleiblem2.g G=mulGrpR
6 eqid BaseR=BaseR
7 5 6 mgpbas BaseR=BaseG
8 5 ringmgp RRingGMnd
9 8 3ad2ant1 RRingQPMBGMnd
10 2eluzge1 21
11 10 a1i RRingQPMB21
12 1z 1
13 fzpr 111+1=11+1
14 12 13 ax-mp 11+1=11+1
15 1p1e2 1+1=2
16 15 preq2i 11+1=12
17 14 16 eqtri 11+1=12
18 df-2 2=1+1
19 18 oveq2i 12=11+1
20 17 19 1 3eqtr4ri N=12
21 20 a1i RRingQPMBN=12
22 3 4 2 matepmcl RRingQPMBnNQnMnBaseR
23 7 9 11 21 22 gsummptfzcl RRingQPMBGnNQnMnBaseR