Metamath Proof Explorer


Theorem m2detleiblem2

Description: Lemma 2 for m2detleib . (Contributed by AV, 16-Dec-2018) (Proof shortened by AV, 1-Jan-2019)

Ref Expression
Hypotheses m2detleiblem2.n N = 1 2
m2detleiblem2.p P = Base SymGrp N
m2detleiblem2.a A = N Mat R
m2detleiblem2.b B = Base A
m2detleiblem2.g G = mulGrp R
Assertion m2detleiblem2 R Ring Q P M B G n N Q n M n Base R

Proof

Step Hyp Ref Expression
1 m2detleiblem2.n N = 1 2
2 m2detleiblem2.p P = Base SymGrp N
3 m2detleiblem2.a A = N Mat R
4 m2detleiblem2.b B = Base A
5 m2detleiblem2.g G = mulGrp R
6 eqid Base R = Base R
7 5 6 mgpbas Base R = Base G
8 5 ringmgp R Ring G Mnd
9 8 3ad2ant1 R Ring Q P M B G Mnd
10 2eluzge1 2 1
11 10 a1i R Ring Q P M B 2 1
12 1z 1
13 fzpr 1 1 1 + 1 = 1 1 + 1
14 12 13 ax-mp 1 1 + 1 = 1 1 + 1
15 1p1e2 1 + 1 = 2
16 15 preq2i 1 1 + 1 = 1 2
17 14 16 eqtri 1 1 + 1 = 1 2
18 df-2 2 = 1 + 1
19 18 oveq2i 1 2 = 1 1 + 1
20 17 19 1 3eqtr4ri N = 1 2
21 20 a1i R Ring Q P M B N = 1 2
22 3 4 2 matepmcl R Ring Q P M B n N Q n M n Base R
23 7 9 11 21 22 gsummptfzcl R Ring Q P M B G n N Q n M n Base R