Metamath Proof Explorer


Theorem matepmcl

Description: Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses matepmcl.a A=NMatR
matepmcl.b B=BaseA
matepmcl.p P=BaseSymGrpN
Assertion matepmcl RRingQPMBnNQnMnBaseR

Proof

Step Hyp Ref Expression
1 matepmcl.a A=NMatR
2 matepmcl.b B=BaseA
3 matepmcl.p P=BaseSymGrpN
4 eqid SymGrpN=SymGrpN
5 4 3 symgfv QPnNQnN
6 5 3ad2antl2 RRingQPMBnNQnN
7 simpr RRingQPMBnNnN
8 2 eleq2i MBMBaseA
9 8 biimpi MBMBaseA
10 9 3ad2ant3 RRingQPMBMBaseA
11 10 adantr RRingQPMBnNMBaseA
12 eqid BaseR=BaseR
13 1 12 matecl QnNnNMBaseAQnMnBaseR
14 6 7 11 13 syl3anc RRingQPMBnNQnMnBaseR
15 14 ralrimiva RRingQPMBnNQnMnBaseR