| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2detleib.n |
|
| 2 |
|
m2detleib.d |
|
| 3 |
|
m2detleib.a |
|
| 4 |
|
m2detleib.b |
|
| 5 |
|
m2detleib.m |
|
| 6 |
|
m2detleib.t |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
2 3 4 7 8 9 6 10
|
mdetleib1 |
|
| 12 |
11
|
adantl |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
ringcmn |
|
| 16 |
15
|
adantr |
|
| 17 |
|
prfi |
|
| 18 |
1 17
|
eqeltri |
|
| 19 |
|
eqid |
|
| 20 |
19 7
|
symgbasfi |
|
| 21 |
18 20
|
ax-mp |
|
| 22 |
21
|
a1i |
|
| 23 |
|
simpl |
|
| 24 |
23
|
adantr |
|
| 25 |
7 9 8
|
zrhpsgnelbas |
|
| 26 |
18 25
|
mp3an2 |
|
| 27 |
26
|
adantlr |
|
| 28 |
|
simpr |
|
| 29 |
|
simpr |
|
| 30 |
29
|
adantr |
|
| 31 |
1 7 3 4 10
|
m2detleiblem2 |
|
| 32 |
24 28 30 31
|
syl3anc |
|
| 33 |
13 6
|
ringcl |
|
| 34 |
24 27 32 33
|
syl3anc |
|
| 35 |
|
opex |
|
| 36 |
|
opex |
|
| 37 |
35 36
|
pm3.2i |
|
| 38 |
|
opex |
|
| 39 |
|
opex |
|
| 40 |
38 39
|
pm3.2i |
|
| 41 |
37 40
|
pm3.2i |
|
| 42 |
|
1ne2 |
|
| 43 |
42
|
olci |
|
| 44 |
|
1ex |
|
| 45 |
44 44
|
opthne |
|
| 46 |
43 45
|
mpbir |
|
| 47 |
42
|
orci |
|
| 48 |
44 44
|
opthne |
|
| 49 |
47 48
|
mpbir |
|
| 50 |
46 49
|
pm3.2i |
|
| 51 |
50
|
orci |
|
| 52 |
41 51
|
pm3.2i |
|
| 53 |
52
|
a1i |
|
| 54 |
|
prneimg |
|
| 55 |
54
|
imp |
|
| 56 |
|
disjsn2 |
|
| 57 |
53 55 56
|
3syl |
|
| 58 |
|
2nn |
|
| 59 |
19 7 1
|
symg2bas |
|
| 60 |
44 58 59
|
mp2an |
|
| 61 |
|
df-pr |
|
| 62 |
60 61
|
eqtri |
|
| 63 |
62
|
a1i |
|
| 64 |
13 14 16 22 34 57 63
|
gsummptfidmsplit |
|
| 65 |
|
ringmnd |
|
| 66 |
65
|
adantr |
|
| 67 |
|
prex |
|
| 68 |
67
|
a1i |
|
| 69 |
67
|
prid1 |
|
| 70 |
69 60
|
eleqtrri |
|
| 71 |
70
|
a1i |
|
| 72 |
7 9 8
|
zrhpsgnelbas |
|
| 73 |
18 72
|
mp3an2 |
|
| 74 |
71 73
|
sylan2 |
|
| 75 |
1 7 3 4 10
|
m2detleiblem2 |
|
| 76 |
70 75
|
mp3an2 |
|
| 77 |
13 6
|
ringcl |
|
| 78 |
23 74 76 77
|
syl3anc |
|
| 79 |
|
2fveq3 |
|
| 80 |
|
fveq1 |
|
| 81 |
80
|
oveq1d |
|
| 82 |
81
|
mpteq2dv |
|
| 83 |
82
|
oveq2d |
|
| 84 |
79 83
|
oveq12d |
|
| 85 |
13 84
|
gsumsn |
|
| 86 |
66 68 78 85
|
syl3anc |
|
| 87 |
|
prex |
|
| 88 |
87
|
a1i |
|
| 89 |
87
|
prid2 |
|
| 90 |
89 60
|
eleqtrri |
|
| 91 |
90
|
a1i |
|
| 92 |
7 9 8
|
zrhpsgnelbas |
|
| 93 |
18 92
|
mp3an2 |
|
| 94 |
91 93
|
sylan2 |
|
| 95 |
1 7 3 4 10
|
m2detleiblem2 |
|
| 96 |
90 95
|
mp3an2 |
|
| 97 |
13 6
|
ringcl |
|
| 98 |
23 94 96 97
|
syl3anc |
|
| 99 |
|
2fveq3 |
|
| 100 |
|
fveq1 |
|
| 101 |
100
|
oveq1d |
|
| 102 |
101
|
mpteq2dv |
|
| 103 |
102
|
oveq2d |
|
| 104 |
99 103
|
oveq12d |
|
| 105 |
13 104
|
gsumsn |
|
| 106 |
66 88 98 105
|
syl3anc |
|
| 107 |
86 106
|
oveq12d |
|
| 108 |
|
eqidd |
|
| 109 |
|
eqid |
|
| 110 |
1 7 8 9 109
|
m2detleiblem5 |
|
| 111 |
108 110
|
sylan2 |
|
| 112 |
|
eqidd |
|
| 113 |
10 6
|
mgpplusg |
|
| 114 |
1 7 3 4 10 113
|
m2detleiblem3 |
|
| 115 |
23 112 29 114
|
syl3anc |
|
| 116 |
111 115
|
oveq12d |
|
| 117 |
44
|
prid1 |
|
| 118 |
117 1
|
eleqtrri |
|
| 119 |
118
|
a1i |
|
| 120 |
4
|
eleq2i |
|
| 121 |
120
|
biimpi |
|
| 122 |
121
|
adantl |
|
| 123 |
3 13
|
matecl |
|
| 124 |
119 119 122 123
|
syl3anc |
|
| 125 |
|
prid2g |
|
| 126 |
58 125
|
ax-mp |
|
| 127 |
126 1
|
eleqtrri |
|
| 128 |
127
|
a1i |
|
| 129 |
3 13
|
matecl |
|
| 130 |
128 128 122 129
|
syl3anc |
|
| 131 |
13 6
|
ringcl |
|
| 132 |
23 124 130 131
|
syl3anc |
|
| 133 |
13 6 109
|
ringlidm |
|
| 134 |
132 133
|
syldan |
|
| 135 |
116 134
|
eqtrd |
|
| 136 |
|
eqidd |
|
| 137 |
|
eqid |
|
| 138 |
1 7 8 9 109 137
|
m2detleiblem6 |
|
| 139 |
136 138
|
sylan2 |
|
| 140 |
|
eqidd |
|
| 141 |
1 7 3 4 10 113
|
m2detleiblem4 |
|
| 142 |
23 140 29 141
|
syl3anc |
|
| 143 |
139 142
|
oveq12d |
|
| 144 |
135 143
|
oveq12d |
|
| 145 |
3 13
|
matecl |
|
| 146 |
128 119 122 145
|
syl3anc |
|
| 147 |
3 13
|
matecl |
|
| 148 |
119 128 122 147
|
syl3anc |
|
| 149 |
13 6
|
ringcl |
|
| 150 |
23 146 148 149
|
syl3anc |
|
| 151 |
1 7 8 9 109 137 6 5
|
m2detleiblem7 |
|
| 152 |
23 132 150 151
|
syl3anc |
|
| 153 |
107 144 152
|
3eqtrd |
|
| 154 |
12 64 153
|
3eqtrd |
|