Metamath Proof Explorer


Theorem mdetleib1

Description: Full substitution of an alternative determinant definition (also known as Leibniz' Formula). (Contributed by Stefan O'Rear, 3-Oct-2015) (Revised by AV, 26-Dec-2018)

Ref Expression
Hypotheses mdetfval1.d D=NmaDetR
mdetfval1.a A=NMatR
mdetfval1.b B=BaseA
mdetfval1.p P=BaseSymGrpN
mdetfval1.y Y=ℤRHomR
mdetfval1.s S=pmSgnN
mdetfval1.t ·˙=R
mdetfval1.u U=mulGrpR
Assertion mdetleib1 MBDM=RpPYSp·˙UxNpxMx

Proof

Step Hyp Ref Expression
1 mdetfval1.d D=NmaDetR
2 mdetfval1.a A=NMatR
3 mdetfval1.b B=BaseA
4 mdetfval1.p P=BaseSymGrpN
5 mdetfval1.y Y=ℤRHomR
6 mdetfval1.s S=pmSgnN
7 mdetfval1.t ·˙=R
8 mdetfval1.u U=mulGrpR
9 oveq m=Mpxmx=pxMx
10 9 mpteq2dv m=MxNpxmx=xNpxMx
11 10 oveq2d m=MUxNpxmx=UxNpxMx
12 11 oveq2d m=MYSp·˙UxNpxmx=YSp·˙UxNpxMx
13 12 mpteq2dv m=MpPYSp·˙UxNpxmx=pPYSp·˙UxNpxMx
14 13 oveq2d m=MRpPYSp·˙UxNpxmx=RpPYSp·˙UxNpxMx
15 1 2 3 4 5 6 7 8 mdetfval1 D=mBRpPYSp·˙UxNpxmx
16 ovex RpPYSp·˙UxNpxMxV
17 14 15 16 fvmpt MBDM=RpPYSp·˙UxNpxMx