Metamath Proof Explorer


Theorem m2detleiblem7

Description: Lemma 7 for m2detleib . (Contributed by AV, 20-Dec-2018)

Ref Expression
Hypotheses m2detleiblem1.n
|- N = { 1 , 2 }
m2detleiblem1.p
|- P = ( Base ` ( SymGrp ` N ) )
m2detleiblem1.y
|- Y = ( ZRHom ` R )
m2detleiblem1.s
|- S = ( pmSgn ` N )
m2detleiblem1.o
|- .1. = ( 1r ` R )
m2detleiblem1.i
|- I = ( invg ` R )
m2detleiblem1.t
|- .x. = ( .r ` R )
m2detleiblem1.m
|- .- = ( -g ` R )
Assertion m2detleiblem7
|- ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X ( +g ` R ) ( ( I ` .1. ) .x. Z ) ) = ( X .- Z ) )

Proof

Step Hyp Ref Expression
1 m2detleiblem1.n
 |-  N = { 1 , 2 }
2 m2detleiblem1.p
 |-  P = ( Base ` ( SymGrp ` N ) )
3 m2detleiblem1.y
 |-  Y = ( ZRHom ` R )
4 m2detleiblem1.s
 |-  S = ( pmSgn ` N )
5 m2detleiblem1.o
 |-  .1. = ( 1r ` R )
6 m2detleiblem1.i
 |-  I = ( invg ` R )
7 m2detleiblem1.t
 |-  .x. = ( .r ` R )
8 m2detleiblem1.m
 |-  .- = ( -g ` R )
9 eqid
 |-  ( Base ` R ) = ( Base ` R )
10 simpl
 |-  ( ( R e. Ring /\ Z e. ( Base ` R ) ) -> R e. Ring )
11 simpr
 |-  ( ( R e. Ring /\ Z e. ( Base ` R ) ) -> Z e. ( Base ` R ) )
12 9 7 5 6 10 11 ringnegl
 |-  ( ( R e. Ring /\ Z e. ( Base ` R ) ) -> ( ( I ` .1. ) .x. Z ) = ( I ` Z ) )
13 12 3adant2
 |-  ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( ( I ` .1. ) .x. Z ) = ( I ` Z ) )
14 13 oveq2d
 |-  ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X ( +g ` R ) ( ( I ` .1. ) .x. Z ) ) = ( X ( +g ` R ) ( I ` Z ) ) )
15 eqid
 |-  ( +g ` R ) = ( +g ` R )
16 9 15 6 8 grpsubval
 |-  ( ( X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X .- Z ) = ( X ( +g ` R ) ( I ` Z ) ) )
17 16 3adant1
 |-  ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X .- Z ) = ( X ( +g ` R ) ( I ` Z ) ) )
18 14 17 eqtr4d
 |-  ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X ( +g ` R ) ( ( I ` .1. ) .x. Z ) ) = ( X .- Z ) )