Step |
Hyp |
Ref |
Expression |
1 |
|
m2detleiblem1.n |
|- N = { 1 , 2 } |
2 |
|
m2detleiblem1.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
3 |
|
m2detleiblem1.y |
|- Y = ( ZRHom ` R ) |
4 |
|
m2detleiblem1.s |
|- S = ( pmSgn ` N ) |
5 |
|
m2detleiblem1.o |
|- .1. = ( 1r ` R ) |
6 |
|
m2detleiblem1.i |
|- I = ( invg ` R ) |
7 |
|
m2detleiblem1.t |
|- .x. = ( .r ` R ) |
8 |
|
m2detleiblem1.m |
|- .- = ( -g ` R ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
|
simpl |
|- ( ( R e. Ring /\ Z e. ( Base ` R ) ) -> R e. Ring ) |
11 |
|
simpr |
|- ( ( R e. Ring /\ Z e. ( Base ` R ) ) -> Z e. ( Base ` R ) ) |
12 |
9 7 5 6 10 11
|
ringnegl |
|- ( ( R e. Ring /\ Z e. ( Base ` R ) ) -> ( ( I ` .1. ) .x. Z ) = ( I ` Z ) ) |
13 |
12
|
3adant2 |
|- ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( ( I ` .1. ) .x. Z ) = ( I ` Z ) ) |
14 |
13
|
oveq2d |
|- ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X ( +g ` R ) ( ( I ` .1. ) .x. Z ) ) = ( X ( +g ` R ) ( I ` Z ) ) ) |
15 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
16 |
9 15 6 8
|
grpsubval |
|- ( ( X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X .- Z ) = ( X ( +g ` R ) ( I ` Z ) ) ) |
17 |
16
|
3adant1 |
|- ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X .- Z ) = ( X ( +g ` R ) ( I ` Z ) ) ) |
18 |
14 17
|
eqtr4d |
|- ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X ( +g ` R ) ( ( I ` .1. ) .x. Z ) ) = ( X .- Z ) ) |