| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2detleiblem1.n |
|- N = { 1 , 2 } |
| 2 |
|
m2detleiblem1.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
| 3 |
|
m2detleiblem1.y |
|- Y = ( ZRHom ` R ) |
| 4 |
|
m2detleiblem1.s |
|- S = ( pmSgn ` N ) |
| 5 |
|
m2detleiblem1.o |
|- .1. = ( 1r ` R ) |
| 6 |
|
m2detleiblem1.i |
|- I = ( invg ` R ) |
| 7 |
|
m2detleiblem1.t |
|- .x. = ( .r ` R ) |
| 8 |
|
m2detleiblem1.m |
|- .- = ( -g ` R ) |
| 9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 10 |
|
simpl |
|- ( ( R e. Ring /\ Z e. ( Base ` R ) ) -> R e. Ring ) |
| 11 |
|
simpr |
|- ( ( R e. Ring /\ Z e. ( Base ` R ) ) -> Z e. ( Base ` R ) ) |
| 12 |
9 7 5 6 10 11
|
ringnegl |
|- ( ( R e. Ring /\ Z e. ( Base ` R ) ) -> ( ( I ` .1. ) .x. Z ) = ( I ` Z ) ) |
| 13 |
12
|
3adant2 |
|- ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( ( I ` .1. ) .x. Z ) = ( I ` Z ) ) |
| 14 |
13
|
oveq2d |
|- ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X ( +g ` R ) ( ( I ` .1. ) .x. Z ) ) = ( X ( +g ` R ) ( I ` Z ) ) ) |
| 15 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 16 |
9 15 6 8
|
grpsubval |
|- ( ( X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X .- Z ) = ( X ( +g ` R ) ( I ` Z ) ) ) |
| 17 |
16
|
3adant1 |
|- ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X .- Z ) = ( X ( +g ` R ) ( I ` Z ) ) ) |
| 18 |
14 17
|
eqtr4d |
|- ( ( R e. Ring /\ X e. ( Base ` R ) /\ Z e. ( Base ` R ) ) -> ( X ( +g ` R ) ( ( I ` .1. ) .x. Z ) ) = ( X .- Z ) ) |